Paper |
Title |
Page |
MOPGW008 |
Transparent Injection for ESRF-EBS |
78 |
|
- S.M. White, N. Carmignani, M. Dubrulle, M. Morati, P. Raimondi
ESRF, Grenoble, France
|
|
|
The commissioning of the ESRF-EBS storage ring will start in December 2019 ultimately providing a horizontal emittance of 130 pm, 30 times lower than the present one. Due to the reduced beam lifetime top-up operation will be required for all operating modes. Transparent injection, i.e. with negligible perturbations on the stored beam, is necessary to allow continuous data acquisition for beam lines experiments. Several options have been considered at ESRF to reduce these perturbations down to a fraction of the rms beam size: i) new kickers power supplies with slow ramping time to facilitate active compensation are under development and will be implemented in the coming years ii) in parallel, long term solutions using non-linear kickers and longitudinal on-axis injection have been investigated.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW008
|
|
About • |
paper received ※ 13 May 2019 paper accepted ※ 18 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPGW005 |
Preparation of the EBS Beam Commissioning |
1388 |
|
- S.M. Liuzzo, N. Carmignani, A. Franchi, T.P. Perron, K.B. Scheidt, E.T. Taurel, L. Torino, S.M. White
ESRF, Grenoble, France
|
|
|
In 2020 the ESRF storage ring will be upgraded to a Hybrid Multi Bend Achromat (HMBA) lattice. The commissioning of the new ring will require dedicated tools, either updated from the existing ones or newly developed. Most of the software and procedures were tested on the existing storage ring before its decommissioning. In particular we present experiments on first-turn steering and beam accumulation, check of magnet polarity and calibration, and injection tuning. The use of a control-system simulator proved to be crucial for the debugging of the software and the development of the new control system, as far as beam measurements and manipulations are concerned.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW005
|
|
About • |
paper received ※ 26 April 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEYPLS1 |
Building the Impedance Model of a Real Machine |
2249 |
|
- B. Salvant, D. Amorim, S.A. Antipov, S. Arsenyev, M.S. Beck, N. Biancacci, O.S. Brüning, J.V. Campelo, E. Carideo, F. Caspers, A. Farricker, A. Grudiev, T. Kaltenbacher, E. Koukovini-Platia, P. Kramer, A. Lasheen, M. Migliorati, N. Mounet, E. Métral, N. Nasr Esfahani, S. Persichelli, B.K. Popovic, T.L. Rijoff, G. Rumolo, E.N. Shaposhnikova, V.G. Vaccaro, C. Vollinger, N. Wang, C. Zannini, B. Zotter
CERN, Meyrin, Switzerland
- D. Amorim
Grenoble-INP Phelma, Grenoble, France
- T. Dalascu
EPFL, Lausanne, Switzerland
- M. Migliorati
Sapienza University of Rome, Rome, Italy
- R. Nagaoka
SOLEIL, Gif-sur-Yvette, France
- V.V. Smaluk
BNL, Upton, Long Island, New York, USA
- B. Spataro
INFN/LNF, Frascati, Italy
- N. Wang
IHEP, Beijing, People’s Republic of China
- S.M. White
ESRF, Grenoble, France
|
|
|
A reliable impedance model of a particle accelerator can be built by combining the beam coupling impedances of all the components. This is a necessary step to be able to evaluate the machine performance limitations, identify the main contributors in case an impedance reduction is required, and study the interaction with other mechanisms such as optics nonlinearities, transverse damper, noise, space charge, electron cloud, beam-beam (in a collider). The main phases to create a realistic impedance model, and verify it experimentally, will be reviewed, highlighting the main challenges. Some examples will be presented revealing the levels of precision of machine impedance models that have been achieved.
|
|
|
Slides WEYPLS1 [5.648 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-WEYPLS1
|
|
About • |
paper received ※ 10 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|