Author: Weterings, W.J.M.
Paper Title Page
WEPMP039 The New Injection Region of the CERN PS Booster 2414
 
  • W.J.M. Weterings, C. Bracco, L.O. Jorat, M. Meddahi, R. Noulibos, P. Van Trappen
    CERN, Geneva, Switzerland
 
  During the Long Shutdown 2 (LS2) at CERN, the new Linac4 (L4) accelerator will be connected to the PS Booster (PSB) to inject 160 MeV H beam into the 4 superposed PSB rings. In order to achieve this, we have designed, built and pre-assembled a completely new H charge-exchange injection chicane system, with a carbon stripping foil unit to convert the negative hydrogen ions into protons by stripping off the electrons. In parallel, we have built and installed a test stand in the L4 transfer line enabling us to gain valuable experience with operation of the stripping foil system and to evaluate different foil types during the L4 reliability runs. This paper describes the final design of the new PSB injection region and reports on the important test results obtained with the stripping foil test stand.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP039  
About • paper received ※ 10 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB072 Operational Experience of a Prototype LHC Injection Kicker Magnet with a Low SEY Coating and Redistributed Power Deposition 3974
 
  • M.J. Barnes, C. Bracco, G. Bregliozzi, A. Chmielinska, L. Ducimetière, B. Goddard, G. Iadarola, T. Kramer, V. Vlachodimitropoulos, W.J.M. Weterings
    CERN, Geneva, Switzerland
  • A. Chmielinska
    EPFL, Lausanne, Switzerland
  • L. Vega Cid
    ETSII UPM, Madrid, Spain
 
  Funding: This research was supported by the HL-LHC project
In the event that it is necessary to exchange an LHC injection kicker magnet (MKI), the newly installed kicker magnet would limit HL-LHC operation for a few hundred hours due to dynamic vacuum activity. A surface coating with a low secondary electron yield, applied to the inner surface of an alumina tube to reduce dynamic vacuum activity without increasing the probability of UFOs, and which is compatible with the high voltage environment, was included in a prototype MKI installed in the LHC during the 2017-18 Year End Technical Stop. In addition, this MKI included an upgrade to relocate a significant portion of beam induced power from the yoke to a ’damping element’: this element is not at pulsed high voltage. The effectiveness of the upgrades has been demonstrated during LHC operation, hence a future version will include water cooling of this ’damping element’. This paper reviews dynamic vacuum around the MKIs and summarizes operational experience of the upgraded MKI.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB072  
About • paper received ※ 08 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB074 Studies Towards the New Beam Screen System of the LHC Injection Kicker Magnet for HL-LHC Operation 3982
 
  • V. Vlachodimitropoulos, M.J. Barnes, A. Chmielinska, L. Ducimetière, L. Vega Cid, W.J.M. Weterings
    CERN, Geneva, Switzerland
  • A. Chmielinska
    EPFL, Lausanne, Switzerland
  • L. Vega Cid
    ETSII UPM, Madrid, Spain
 
  Although no heating issues were observed in the Large Hadron Collider’s (LHC) injection kicker magnets (MKIs) during Run 2, simulations suggest that for operation with the high intensity beams of the High Luminosity LHC (HL-LHC) project, the magnet’s ferrite yokes will reach their Curie temperature, thus leading to long turnaround times before a new beam can be safely injected into the machine. To safely enter the HL-LHC era, a campaign to redesign the kicker’s beam screen was launched. An improved beam-screen has already been implemented in an upgraded MKI, that was installed in the LHC tunnel in the Year End Technical Stop (YETS) 17/18, and has been successfully tested during 2018 operation. However, the improved design alone is not expected to be enough for HL-LHC operation, and further modifications are required. In this work, the approach to the design from an electromagnetic point of view is presented and different considered options are reported, emphasising the final design of the new beam screen system that is currently being implemented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB074  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)