Author: Welander, P.B.
Paper Title Page
WEPRB090 The Design of Parallel-Feed SC RF Accelerator Structure 3024
 
  • M.H. Nasr, Z. Li, S.G. Tantawi, P.B. Welander
    SLAC, Menlo Park, California, USA
 
  Funding: Research funded by a SLAC Laboratory-Directed Research and Development award, supported by the U.S. Department of Energy, contract number DE-AC02-76SF00515
Development of superconducting RF (SRF) accelerator technology that enables both higher gradient and higher efficiency is crucial for future machines. While much of the recent R&D focus has been on materials and surface science, our aim is to optimize the cavity geometry to maximize performance with current materials. The recent demonstration of a highly efficient parallel-feed normal-conducting RF structure at SLAC has served as a proof-of-concept. Instead of coupled elliptical cells, the structure employs isolated re-entrant cells. To feed RF power to the cavities, each cell is directly coupled to an integrated manifold. The structure is made in two parts, split along the beam axis, which are then joined. Applied to SRF, simulations suggest such a structure could nearly double the achievable gradient, while reducing cryogenic RF loss by more than half. We are experimentally verifying the concept using an X-band SRF design to be tested at SLAC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB090  
About • paper received ※ 24 May 2019       paper accepted ※ 27 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)