Author: Wang, S.W.
Paper Title Page
TUPMP029 Establishing a Laser Treatment to Suppress the Secondary Electron Emission 1303
SUSPFO071   use link to see paper's listing under its alternate paper code  
 
  • Y.G. Wang, X.Q. Ge, X.T. Pei, S.W. Wang, Y. Wang, B. Zhang, B.L. Zhu
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Laser treatment has a significant inluent on suppressing the secondary electron emission(SEE). The new synchrotron radiation light source, the Hefei Advanced Light Source(HALS) has a strict requirement on the SEE. In this paper, we used a 355nm laser to process copper sample. After the laser treatment, the secondary electron yield(SEY) reduced from 2.05 to 0.86. We used the scanning electron microscope(SEM) to analysis the surface of sample after the laser treatment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP029  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS103 Optimization of a Low-Alpha Lattice for the HLS-II Storage Ring 3360
 
  • S.W. Wang, Y.G. Wang, W. Xu, K. Xuan
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • J.Y. Li
    IHEP, Beijing, People’s Republic of China
 
  To generate terahertz radiation at HLS-II, a low-alpha lattice scheme is proposed. The new lattice can reduce the bunch length in the storage ring, thus enhancing the coherent synchrotron radiation in the THz region. In this paper, the design and optimization of a low-alpha lattice is reported. The new lattice preserves the symmetry of nominal lattice and reduces the first and second order momentum factor at the cost of increasing maximum beta function and natural emittance. The bunch length is tracked and the result shows that the low-alpha lattice can effectively compress bunches in the storage ring. The performance of this low-alpha lattice can be further studied and improved.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS103  
About • paper received ※ 29 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)