Paper | Title | Page |
---|---|---|
MOPRB027 | Progress of HEPS Accelerator System Design | 633 |
|
||
The 4th generation ring-based light sources, HEPS (High Energy Photon Source) 7BA lattice has been de-veloped at IHEP. This is 6Gev, 200mA machine which has horizontal emittance Ɛh around 60pm.rad to gain the high brilliance photon beam. this compact lattice design bring so many engineering challenges for accelerator magnets, vacuum components, beam diagnotice, etc. This paper will present the noval lattice design and subsystem design progress. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB027 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUZPLS2 | Beam Dynamics Study in the HEPS Storage Ring | 1203 |
|
||
The High Energy Photon Source (HEPS) is the first high-energy diffraction-limited storage ring (DLSR) light source to be built in China, with a natural emittance of a few tens of pm rad and a circumference of 1360.4 m. After 10 years’ evolution, the accelerator physics design of the HEPS has been basically determined, with the ring consisting of 48 hybrid-7BAs with anti-bends and super-bends. This paper will discuss the accelerator physics studies of the HEPS storage ring, covering issues of lattice design, nonlinear optimization, collective effects, error correction, insertion devices, etc. | ||
![]() |
Slides TUZPLS2 [9.517 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUZPLS2 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPGW046 | Progress of Lattice Design and Physics Studies on the High Energy Photon Source | 1510 |
|
||
The High Energy Photon Source (HEPS) is an ul-tralow-emittance, kilometer-scale storage ring light source to be built in China. In this paper we will introduce the progress of the physics design and related studies of HEPS over the past year, covering issues in storage ring lattice design, injection and injector design, insertion device effects, error study and lattice calibration, collective effects, etc. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW046 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPRB062 | Coherence Time Characterization for Self-Amplified Spontaneous Emission Free-Electron Lasers | 1820 |
|
||
One of the key challenges in scientific researches based on free-electron lasers (FELs) is the characterization of the coherence time of the ultra-fast hard x-ray pulse, which fundamentally influences the interaction process between x-ray and materials. Conventional optical methods, based on autocorrelation, is very difficult to realize due to the lack of mirrors. Here, we experimentally demonstrate a conceptually new coherence time characterization method and a coherence time of 174.7 attoseonds has been measured for the 6.92 keV FEL pulses at Linac Coherent Light Source. In our experiment, a phase shifter is adopted to control the cross-correlation between x-ray and microbunched electrons. This approach provides critical temporal coherence diagnostics for x-ray FELs, and is decoupled from machine parameters, applicable for any photon energy, radiation brightness, repetition rate and FEL pulse duration, etc.
The work was supported by the US Department of Energy (DOE) under contract DE-AC02-76SF00515 and the US DOE Office of Science Early Career Research Program grant FWP-2013-SLAC-100164. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB062 | |
About • | paper received ※ 01 May 2019 paper accepted ※ 28 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |