Author: Vallerand, C.
Paper Title Page
TUPGW008 PERLE: A High Power Energy Recovery Facility 1396
 
  • W. Kaabi, I. Chaikovska, A. Stocchi, C. Vallerand
    LAL, Orsay, France
  • D. Angal-Kalinin, J.W. McKenzie, B.L. Militsyn, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • S.A. Bogacz, A. Hutton, F. Marhauser, R.A. Rimmer, C. Tennant
    JLab, Newport News, Virginia, USA
  • S. Bousson, D. Longuevergne, G. Olivier, G. Olry
    IPN, Orsay, France
  • O.S. Brüning, R. Calaga, L. Dassa, F. Gerigk, E. Jensen, P.A. Thonet
    CERN, Geneva, Switzerland
  • B. Hounsell, M. Klein, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • E.B. Levichev, Yu.A. Pupkov
    BINP SB RAS, Novosibirsk, Russia
 
  PERLE is a proposed high power Energy Recovery Linac, designed on multi-turn configuration, based on SRF technology, to be hosted at Orsay-France in a col-laborative effort between local laboratories: LAL and IPNO, together with an international collaboration involv-ing today: CERN, JLAB, STFC ASTeC Daresbury, Liverpool University and BINP Novosibirsk. PERLE will be a unique leading edge facility designed to push advances in accelerator technology, to provide intense and highly flexible test beams for component development. In its final configuration, PERLE provides a 500 MeV elec-tron beam using high current (20 mA) acceleration during three passes through 801.6 MHz cavities. This presenta-tion outlines the technological choices, the lattice design and the main component descriptions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW008  
About • paper received ※ 19 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP002 Optics Design and Beam Dynamics Simulation for a VHEE Radiobiology Beam Line at PRAE Accelerator 3444
 
  • A. Faus-Golfe, B. Bai, Y. Han, C. Vallerand
    LAL, Orsay, France
  • R. Delorme, Y. Prezado
    IMNC, Orsay, France
  • M. Dosanjh
    CERN, Meyrin, Switzerland
  • P. Duchesne
    IPN, Orsay, France
  • V. Favaudon, C. Fouillade, P.M. Poortmans, F. Pouzoulet
    Institut Curie - Centre de Protonthérapie d’Orsay, Orsay, France
 
  The Platform for Research and Applications with Electrons (PRAE) is a multidisciplinary R&D facility gathering subatomic physics, instrumentation, radiobiology and clinical research around a high-performance electron accelerator with beam energies up to 70 MeV. In this paper we report the complete optics design and performance evaluation of a Very High Energy Electron (VHEE) innovative radiobiology study, in particular by using Grid mini-beam and FLASH methodologies, which could represent a major breakthrough in Radiation Therapy (RT) treatment modality.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP002  
About • paper received ※ 27 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP003 The PRORAD Beam Line Design for PRAE 3448
 
  • A. Faus-Golfe, B. Bai, Y. Han, C. Vallerand
    LAL, Orsay, France
  • P. Duchesne, D. Marchand, E.J-M. Voutier
    IPN, Orsay, France
 
  The PRAE (Platform for Research and Applications with Electrons) accelerator is being built at Orsay campus with the main objective of creating a multidisciplinary R&D platform, involving subatomic physics, instrumentation, radiobiology and clinical research around a high-performance electron accelerator with beam energies up to 70 MeV (planned 140 MeV). In this paper we will report the optics design and beam dynamics simulations for the beam line dedicated to subatomic physics, more specifically for the measurement of the proton radius. This measurement requires extremely low energy spread (5×10−4) and small beam sizes with low divergence at three beam energies: 30, 50 and 70 MeV. The beam line includes a D-type chicane coupled to a dechirping passive structure, which generates inductive wakefields in order to get the performances required for such measurement.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP003  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)