Paper | Title | Page |
---|---|---|
MOPMP008 | Electron Driven Positron Source for International Linear Collider | 439 |
|
||
Funding: This work is partly supported by Japan-US Cooperative grant for scientific studies, Grant aid for scientific study by MEXT Japan (KAKENHI) To linear colliders, huge amount of positron has to be provided comparing to ring colliders, because the beam is dumped after the collision. Electron Driven ILC Positron source has been designed as a technical backup of the undulator position source including the beam loading effect, etc. The design of the detail will be presented. To linear colliders, huge amount of positron has to be provided comparing to ring colliders, because the beam is dumped after the collision. Electron Driven ILC Positron source has been designed as a technical backup of the undulator position source including the beam loading effect, etc. The design of the detail will be presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP008 | |
About • | paper received ※ 13 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPGW032 | Mode-Locked Pulse Oscillation of a Self-Resonating Enhancement Optical Cavity | 1471 |
|
||
A power enhancement optical cavity is a compelling means of realizing a pulsed laser with a high peak power and high repetition frequency, which is not feasible using a simple amplifier scheme. However, a precise feedback system is necessary for maintaining the narrow resonance condition of the optical cavity; this has become a major technical issue in developing such cavities. We have developed a new approach that does not require any active feedback system, by placing the cavity in the outer loop of a laser amplifier. We report on the first demonstra-tion of a mode-locked pulse oscillation using the new system. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW032 | |
About • | paper received ※ 15 April 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTS055 | Energy Modulation of Electron Beam in Corrugated Dielectric Waveguide | 3248 |
|
||
Energy modulated electron beams have a wide range of applications in accelerator physics, for example they can serve as drivers in resonant wakefield acceleration schemes. A strong wakefield induced energy modulation can be produced using a dielectric lined waveguide, the resultant micro-bunched beam is capable of producing coherent terahertz radiation *. We report on observation of energy modulation due to self-wakefields in a few picosecond duration and ~1 nC charge electron bunches of LUCX facility at KEK. To produce the modulation, we used a corrugated dielectric waveguide with an inner radius of 2 mm and a period of corrugation of 10 mm. In this case, the period of corrugation is longer than the wavelength of the main accelerating mode. We show electromagnetic simulations of on-axis electric fields leading to an optimisation of the corrugation period allowing to enhance the accelerating/decelerating fields compared to dielectric lined waveguides with a constant inner radius.
* S. Antipov et al., Experimental observation of energy modulation in electron beams passing though terahertz dielectric wakefield structures, PRL 108, 144801 (2012). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS055 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPGW035 | Development of Yb-Based Laser System for Crab Crossing Laser-Compton Scattering | 3657 |
|
||
Funding: This work was supported by JSPS KAKENHI 18H0123. We are going to demonstrate the principle of crab crossing in laser-Compton scattering which creates head-on collision in a pseudo manner to enhance the intensity of laser-Compton X-ray. When the electron beam is tilted by half of the collision angle, the scat-tered X-rays becomes the largest. Calculation shows that more than threefold luminosity will be achieved in our system and could be larger luminosity depending on the beam parameters. The intensity of scattered light can be efficiently enhanced by using a collision laser with high intensity, high quality and ultrashort pulse duration. Thus, we have introduced a regenera-tive amplifier using ceramics thin-disk as a collision laser and developed a dedicated laser system. In this conference, we will report on our laser system and results of crab crossing laser-Compton scattering. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW035 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |