Author: Teytelman, D.
Paper Title Page
WEPTS016 Longitudinal Beam Manipulation by RF Phase Modulation at the Karlsruhe Research Accelerator 3123
 
  • A. Mochihashi, E. Blomley, T. Boltz, E. Huttel, B. Kehrer, A.-S. Müller, M. Schuh
    KIT, Karlsruhe, Germany
  • D. Teytelman
    Dimtel, San Jose, USA
 
  At the storage ring KARA (Karlsruhe Research Accelerator) of the Karlsruhe Institute of Technology (KIT) we have installed a function for the RF phase modulation to the low-level RF system. By choosing proper conditions of the modulation, the electron distribution on the longitudinal phase space can be changed in a large range. There are several applications of this longitudinal manipulation to the accelerator operation: an improvement of the beam lifetime and suppression of collective instabilities. We have performed tracking simulations for the longitudinal beam manipulation by the RF phase modulation. The results have implied that the longitudinal phase space distribution strongly depends on the modulation frequency. We have also performed experiments, which aimed at improving the beam lifetime in 2.5 GeV KARA multi-bunch operations. In this contribution, the low-level RF system at KARA, the simulation and experimental results under the RF phase modulation will be presented. As one of the options of the modulation, we consider manipulation of the internal fine structure in the longitudinal phase space by the modulation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS016  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB112 Commission of the Transverse Bunch-by-Bunch Feedback at SPEAR3 4081
 
  • K. Tian, W.J. Corbett, X. Huang, N. Kurita, D.J. Martin, J.A. Safranek, J.J. Sebek
    SLAC, Menlo Park, California, USA
  • D. Teytelman
    Dimtel, San Jose, USA
 
  Funding: Work supported by US Department of Energy Contract DE-AC03-76SF00515.
Driven by the demand of suppressing transverse beam instabilities and developing novel short pulse operation modes in SPEAR3 storage ring, a wide-band transverse bunch-by-bunch feedback system has been recently commissioned for SPEAR3 storage ring. The system was demonstrated to be sufficient to suppress the transverse coupled bunch instabilities caused by trapped RF modes in one of the in vacuum insertion devices. A new function of beam instability interlock has been developed and is part of machine protection system for the in vacuum insertion device. In addition, the bunch-by-bunch feedback system serves as a indispensable diagnostic tool that enables us to measure machine parameters, beam impedance, and characteristics of the beam instability modes. In this paper, we describe the scheme and performance of the bunch-by-bunch feedback system at SPEAR3.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB112  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)