Author: Temkin, R.J.
Paper Title Page
THPGW080 Initial Results of High-Gradient Breakdown Tests for W-Band Accelerating Structures 3769
 
  • M.A.K. Othman, V.A. Dolgashev, A.A. Haase, E.A. Nanni, J. Neilson, S.G. Tantawi
    SLAC, Menlo Park, California, USA
  • S. Jawla, J.F. Picard, R.J. Temkin
    MIT/PSFC, Cambridge, Massachusetts, USA
  • S.C. Schaub
    MIT, Cambridge, Massachusetts, USA
  • B. Spataro
    INFN/LNF, Frascati, Italy
 
  Funding: This work was supported by Department of Energy contract DE-AC02-76SF00515 (SLAC) and grant DE-SC0015566 (MIT). This work was also supported by NSF grants PHY-1734015.
Emerging accelerator technology at mm-wave and THz frequencies has recently shown notable progress. Indeed, metallic and dielectric accelerating structures at THz frequencies are plausible candidates toward miniaturization of accelerators. RF breakdown in such structures is a major factor limiting their performance. Therefore, comprehensive analysis of RF breakdown physics in mm-wave accelerating structures is needed, which includes understanding of dependencies of the breakdown rate on geometric, electromagnetic and material properties. In this work we report on high power tests of a 110 GHz single-cell standing wave accelerating structure powered by a 1 MW gyrotron. The RF power is coupled from the gyrotron into the accelerating structure with a Gaussian to TM01 mode converter through a quasi-optical setup. We demonstrate coupling of 10 ns, 100s of kilowatt pulses into the structure using a fast switch and achieving ~150 MV/m accelerating gradients. Measurements of RF signals and field-emitted currents allow for complete comprehensive of the high-gradient behavior of W-band structures, including breakdown probability.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW080  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)