Author: Tavares, P.F.
Paper Title Page
TUPGW063 Studying the Dynamic Influence on the Stored Beam From a Coating in a Multipole Injection Kicker 1547
 
  • J. Kallestrup, Å. Andersson, J. Breunlin, D.K. Olsson, P.F. Tavares
    MAX IV Laboratory, Lund University, Lund, Sweden
  • P. Alexandre, R. Ben El Fekih
    SOLEIL, Gif-sur-Yvette, France
 
  The MAX IV 3 GeV ring is the first synchrotron light source utilizing the Multi-Bend Achromat scheme to achieve a low horizontal bare-lattice emittance of 328 pm rad providing high brilliance x-rays for users. A novel Multipole Injection Kicker (MIK) designed and constructed by SOLEIL is used to allow top-up operation with only minor disturbances to the stored beam, i.e., the users. We investigate the stored beam perturbations due to quadrupole fields arising during the MIK pulse, originating from its inner coating. Maximum bunch emittance growth of §I{21}{πco\meter\radian} was found in simulations. Measurements of the stored beam impact are performed and found to be in good agreement with simulations. We conclude that the MIK at MAX IV 3 GeV has the potential to deliver quasi-transparent injections with good capture efficiency.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW063  
About • paper received ※ 06 May 2019       paper accepted ※ 17 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW075 Towards a Diffraction Limited Storage Ring 1573
 
  • J. Bengtsson
    DLS, Oxfordshire, United Kingdom
  • P.F. Tavares
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  A Lattice for a 500 m circ. Tunnel, based on First Principles & Best Practices is presented. Background: MAX-IV has made a "quantum leap" towards a Diffraction Limited Storage Ring (DLSR) by an Engineering-Science, i.e., Systems, Approach; leading to a Paradigm Shift(s): e.g. the Magnet Reference Radius is a Key Parameter, a Design Choice, that must be considered at an early stage for Robust Design. In addition, the pursuit of Systematic Benchmarks, MAX-I -> MAX-IV, has enabled the pursuit of Disruptive Technologies with Predictable Results. For example: Combined-Function Magnets (built-to-print) enabling an "IKEA Approach" (innovative, prompted by low-budget) like the use of Concrete Girders, Vacuum Requirements mitigated by NEG Coating, and Solid State Modulators providing a Reliable Injector by a Full-Energy Linac. Since "The Experiment" now has been done, Permanent Magnets, well understood for high-end Insertion Devices, provides another opportunity/step for a Next Generation. Besides, the Electricity Bill for Conventional Magnets is a significant part of the Operations Cost.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW075  
About • paper received ※ 20 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)