Paper | Title | Page |
---|---|---|
MOPTS111 | Primary Beam Dynamics Design of a Heavy-Ion IH-DTL With Electromagnetic Quadrupoles | 1140 |
|
||
A new IH-DTL beam dynamics scheme, IH-EMQ (ElectroMagnetic Quadrupole) is presented to obtain a large longitudinal acceptance. In this scheme, electromagnetic quadrupoles are installed inside the drift tubes of IH-DTL. A large-longitudinal-acceptance heavy-ion IH-DTL design is described in this paper. With the limit current of 25 mA, the 90% normalized longitudinal acceptance reaches 87.8 pi.deg. MeV for the 60 MeV 107Au30+, which is 8 times of the input emittance. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS111 | |
About • | paper received ※ 09 April 2019 paper accepted ※ 17 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPTS112 | Matrix Approach to Decouple Transverse-Coupled Beams | 1144 |
|
||
Funding: Work supported by the National Key Research and Development Program of China (grant number 2016YFC0105408). Transverse emittances, especially vertical emittance, are strictly required in the synchrotrons with multi-loop injection. Transverse emittances easily grow up if transverse beam phase spaces are coupled. The growth of the transverse emittance can be restained by decoupling the beam phase spaces. Based on the transfer matrix calculation, it can be theoretically proved that the decoupling can be implemented for general situations. A minimum number of rotated quadrupoles required for decoupling is given. Two quadrupoles can decouple the beam and suppress its emittance growth to 1% in the coupling DTL case. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS112 | |
About • | paper received ※ 28 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPRB039 | Tuning of a Tapered Ridge-Loaded Waveguide Coupler for a Drift Tube LINAC of the Compact Pulsed Hadron Source | 2893 |
|
||
This paper presents the tuning result of a tapered ridge-loaded waveguide coupler for the drift tube linac (DTL) of the compact pulsed hadron source (CPHS) at Tsinghua University. The coupler has been designed, manufactured, and mounted on the DTL cavity for the cold measurement and tuning. The iris diameter of the coupler which is related to the coupling coefficient needs to be determined in the tuning experiment, due to the difference between the designed and measured quality factors. Meanwhile, we found that the relationship between the coupling coefficient and iris diameter from the traditional analytical design method is not applicable when the iris diameter is relatively large. In this paper, the target coupling coeffi-cient is analysed, and the limit of the original analytical design is presented. The measurement method is intro-duced to improve the measurement efficiency and the tuning process of the coupling coefficient to the target value is described. After several iterations, the coupling coefficient is tuned to 1.54 which is close to the desired value of 1.56. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB039 | |
About • | paper received ※ 30 April 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |