Paper | Title | Page |
---|---|---|
MOPGW046 | Proton Beam Steering for the Experimental Muon Source at CSNS | 193 |
|
||
Experimental Muon Source (EMuS) is a muon source to be built at China Spallation Neutron Source (CSNS). The EMuS baseline design adopts a stand-alone target sitting in capture superconducting solenoids, and the muon beam is extracted in the forward direction. In the same time the spent protons are also extracted from the target station and guided to an external. Because there is an angle of 15 degrees between the axis of solenoids and the proton direction, the protons will be deviated by the solenoid field. A pair of correction magnets in front of the solenoids is used to align the incoming proton beam to the target and also guide the spent protons to the beam dump. As the target station is design to work at different field level, this increases the complexity of the proton beam transport. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW046 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPRB045 | Future High Power Proton Drivers for Neutrino Beams | 662 |
|
||
Funding: ESSnuSB has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 7774. Over the last two decades, significant efforts were made through several international studies to identify and develop technical solutions for potential Neutrino Factories and Superbeam Facilities. With many questions now settled, as well as clearer R&D needs, various proposals are being made for future facilities in China, Europe, Japan and North America. These include both developing and adapting existing machines as well as green-field solutions. In this paper, we review all the major accelerator programmes aimed at delivering high-power proton beams for neutrino physics. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB045 | |
About • | paper received ※ 22 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEYPLM1 | Status of Circular Electron-Positron Collider and Super Proton-Proton Collider | 2244 |
|
||
Circular electron-positron collider (CEPC) is a dedi-cated project proposed by China to research the Higgs boson. The collider ring provides e+ e− collision at two interaction points (IP). The luminosity for the Higgs mode at the beam energy of 120GeV is 3*1034 cm-2s-1 at each IP while the synchrotron radiation (SR) power per beam is 30MW. Furthermore, CEPC is compatible with W and Z experiments, for which the beam energies are 80 GeV and 45.5 GeV respectively. The luminosity at the Z mode is higher than 1.7*1035 cm-2s-1 per IP. Top-up operation is available during the data taking of high energy physics. Super Proton-Proton Collider (SPPC) is envisioned to be an extremely powerful machine, with centre mass energy of 75 TeV, a nominal luminosity of 1.0*1035 cm-2s-1 per IP, and an integrated luminosity of 30 ab-1 assuming 2 interaction points and ten years of running. The status of CEPC and SPPC will be introduced in detail in this paper. | ||
![]() |
Slides WEYPLM1 [11.814 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEYPLM1 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPGW040 | Decay Muon Beamline Design for EMuS | 3670 |
|
||
Funding: This work is supported by the Chinese Academy of Sciences. The beamline design philosophies and simulation re-sults of the decay muon on Experimental Muon Source (EMuS) are reported in this paper. The beamline is com-posed of solenoids to keep large acceptance, and has been optimized for 45, 150 and 450 MeV/c decay muon re-spectively according to the π spectra optimization results from target station. Decay muons from 45 to 150 MeV/c are designed for μSR applications, and 150 to 450 MeV/c are designed for muon imaging, which is unique on the high momentum perspective. Negative muons from 45 to 150 MeV/c are designed for muonic applications. The momentum range of decay muon is tuneable between 45 and 450 MeV/c. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW040 | |
About • | paper received ※ 01 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |