Author: Takahashi, T.
Paper Title Page
MOPMP008 Electron Driven Positron Source for International Linear Collider 439
 
  • M. Kuriki, T. Okugi, T. Omori, M. Satoh, Y. Seimiya, J. Urakawa, K. Yokoya
    KEK, Ibaraki, Japan
  • H. Nagoshi
    HU/AdSM, Higashi-Hiroshima, Japan
  • K. Negishi
    Iwate University, Morioka, Iwate, Japan
  • Y. Sumitomo
    LEBRA, Funabashi, Japan
  • T. Takahashi
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
 
  Funding: This work is partly supported by Japan-US Cooperative grant for scientific studies, Grant aid for scientific study by MEXT Japan (KAKENHI)
To linear colliders, huge amount of positron has to be provided comparing to ring colliders, because the beam is dumped after the collision. Electron Driven ILC Positron source has been designed as a technical backup of the undulator position source including the beam loading effect, etc. The design of the detail will be presented. To linear colliders, huge amount of positron has to be provided comparing to ring colliders, because the beam is dumped after the collision. Electron Driven ILC Positron source has been designed as a technical backup of the undulator position source including the beam loading effect, etc. The design of the detail will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP008  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW032 Mode-Locked Pulse Oscillation of a Self-Resonating Enhancement Optical Cavity 1471
 
  • Y. Hosaka
    QST/Takasaki, Takasaki, Japan
  • Y. Honda, T. Omori, J. Urakawa
    KEK, Ibaraki, Japan
  • A. Kosuge
    ISSP, Kashiwa-shi, Japan
  • K. Sakaue
    The University of Tokyo, The School of Engineering, Tokyo, Japan
  • T. Takahashi
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
  • Y. Uesugi
    Tohoku University, Institute of Multidisciplinary Research for Advanced Materials, Sendai, Japan
  • M. Washio
    Waseda University, Tokyo, Japan
 
  A power enhancement optical cavity is a compelling means of realizing a pulsed laser with a high peak power and high repetition frequency, which is not feasible using a simple amplifier scheme. However, a precise feedback system is necessary for maintaining the narrow resonance condition of the optical cavity; this has become a major technical issue in developing such cavities. We have developed a new approach that does not require any active feedback system, by placing the cavity in the outer loop of a laser amplifier. We report on the first demonstra-tion of a mode-locked pulse oscillation using the new system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW032  
About • paper received ※ 15 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)