Author: Szumlak, T.
Paper Title Page
THPMP043 Non-Invasive Beam Monitoring Using LHCb VELO With 40 MeV Protons 3541
 
  • R. Schnuerer, C.P. Welsch, J.S.L. Yap, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • T. Price
    Birmingham University, Birmingham, United Kingdom
  • R. Schnuerer, C.P. Welsch, J.S.L. Yap, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • T. Szumlak
    AGH, Cracow, Poland
 
  Funding: EU grant agreements 215080 and 675265, the Cockcroft Institute core Grant (ST/G008248/1), national agency: MNiSW and NCN (UMO-2015/17/B/ST2/02904) and the Grand Challenge Network+ (EP/N027167/1).
In proton beam therapy, knowledge of the detailed beam properties is essential to ensure effective dose delivery to the patient. In clinical practice, currently used interceptive ionisation chambers require daily calibration and suffer from slow response time. This contribution presents a new non-invasive method for dose online monitoring. It is based on the silicon multi-strip sensor LHCb VELO (VErtex LOcator), developed originally for the LHCb experiment at CERN. The semi-circular detector geometry offers the possibility to measure beam intensity through halo measurements without interfering with the beam core. Results from initial tests using this monitor in the 40 MeV proton beamline at the University of Birmingham, UK are shown. Synchronised with an ionisation chamber and the RF cyclotron frequency, VELO was used as online monitor by measuring the intensity in the proton beam halo and using this information as basis for 3D beam profiles. Experimental results are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP043  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)