Author: Syratchev, I.
Paper Title Page
WEPRB064 High Power Conditioning of X-Band Variable Power Splitter and Phase Shifter 2964
 
  • V. del Pozo Romano, H. Bursali, N. Catalán Lasheras, A. Grudiev, S. Pitman, I. Syratchev
    CERN, Geneva, Switzerland
  • C. Serpico
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • M. Volpi
    The University of Melbourne, Melbourne, Victoria, Australia
 
  The three X-band test facilities currently at CERN aim at qualifying CLIC structures prototypes but are also exten- sively used to qualify X-band components operation at high power. In order to upgrade one of the facilities from a single test line to a double test line facility, a high power variable splitter and variable phase shifter have been designed and manufactured at CERN. They have been power tested, first in a dedicated test and also in their final configuration, to en- sure stable power operation before installing them together with an accelerating structure. In this paper, we broadly describe the RF and mechanical design, manufacturing and low power measurements agreement with simulations. We report the high power qualification of both components and their suitability to be used in existing and planned X-band facilities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB064  
About • paper received ※ 10 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP038 Collaborative Strategies for Meeting the Global Need for Cancer Radiation Therapy Treatment Systems 3526
 
  • M. Dosanjh, P. Collier, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
  • A. Aggarwal
    KCL, London, United Kingdom
  • D. Angal-Kalinin, P.A. McIntosh, B.L. Militsyn
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • R. Apsimon
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • S.T. Boogert
    Royal Holloway, University of London, Surrey, United Kingdom
  • G. Burt
    Lancaster University, Lancaster, United Kingdom
  • N. Coleman, D.A. Pistenmaa
    ICEC, Washington, DC, USA
  • A.W. Cross
    USTRAT/SUPA, Glasgow, United Kingdom
  • I.V. Konoplev, S.L. Sheehy
    JAI, Oxford, United Kingdom
 
  The idea of designing affordable equipment and developing sustainable infrastructures for delivering radiation treatment for patients with cancer in countries that lack resources and expertise stimulated a first International Cancer Expert Corps (ICEC) championed, CERN-hosted workshop in Geneva in November 2016. Which has since been followed by three additional workshops involving the sponsorship and support from UK Science and Technology Facilities Council (STFC). One of the major challenges in meeting this need to deliver radiotherapy in low- and middle-income countries (LMIC) is to design a linear accelerator and associated instrumentation system which can be operated in locations where general infrastructures and qualified human resources are poor or lacking, power outages and water supply fluctuations can occur frequently and where climatic conditions might be harsh and challenging. In parallel it is essential to address education, training and mentoring requirements for current, as well as future novel radiation therapy treatment (RTT) systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP038  
About • paper received ※ 11 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)