Author: Stoltz, P.
Paper Title Page
TUPTS096 Fluid Models of Inductively Coupled Plasma Sources for Negative Hydrogen Ion Sources 2147
 
  • S.A. Veitzer, P. Stoltz
    Tech-X, Boulder, Colorado, USA
 
  Funding: This work was performed under the auspices of the Department of Energy, Office of Basic Energy Sciences Award #DE-SC0009585.
Negative hydrogen ion sources are widely used to produce neutron beams via spallation both for neutron science in its own right, and as neutron sources for fusion devices. Numerical modeling is a useful tool for trying to optimize negative hydrogen ion sources. However there are significant numerical and computational challenges that have to be overcome, including code performance and resolution of separation of time scales between ion and electron motions. One method is to utilize fluid models to simulate inductively coupled ion sources (ICPs). We have been developing algorithms to simulate negative hydrogen production in high-power, external-antenna ICP sources. We present simulation results using the USim*,** framework to model plasma chemistry that produces negative hydrogen, and model the effects of electron temperature on overall production rates. The numerical plasma chemistry models include processes of ionization, dissociation, recombination, as well as reactive dissociation of vibrationally resolved states and de-excitation of atomic hydrogen. We benchmark our plasma chemistry model results using plasma parameters relevant to experiments being carried out at the D-Pace Ion Source Test Facility. We have also been developing fluid-based drift/diffusion models for multi-component plasmas, such as those in negative hydrogen sources. These simulation results demonstrate enhancement of the effective diffusion rates in plasmas that contain both electrons and negative ions.
* J. Loverich and A. Hakim, J. Fusion Sci., 29(6), 2010.
** J. Loverich et al., AIAA, Vol. 4012, 2011.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS096  
About • paper received ※ 19 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)