Author: Steier, C.
Paper Title Page
TUPGW021 An Accelerator Toolbox (AT) Utility for Simulating the Commissioning of Storage-Rings 1441
 
  • T. Hellert, Ph. Amstutz, C. Steier, M. Venturini
    LBNL, Berkeley, California, USA
 
  We present the development of an AT-based toolkit, which allows for realistic commissioning simulations of storage ring light sources by taking into account a multitude of error sources as well as diligently treating beam diagnostic limitations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW021  
About • paper received ※ 08 April 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW022 Commissioning Simulation Study for the Accumulator Ring of the Advanced Light Source Upgrade 1445
 
  • T. Hellert, Ph. Amstutz, M.P. Ehrlichman, S.C. Leemann, C. Steier, C. Sun, M. Venturini
    LBNL, Berkeley, California, USA
 
  The Advanced Light Source Upgrade (ALS-U) to a diffraction-limited soft x-rays light source requires the construction of an Accumulator Ring (AR) to enable swap-out, on-axis injection. The AR lattice is a Triple-Bend-Achromat lattice similar to that of the current ALS but to minimize the magnet sizes the vacuum chamber will be significantly narrower hence requiring a careful evaluation of the magnets’ field quality. This work presents the results of a detailed error tolerance study including a complete simulation of the commissioning process.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW022  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW088 Removal and Installation Planning for the Advanced Light Source - Upgrade Project 1609
 
  • D. Leitner, P.W. Casey, K. Chow, D.F. Fuller, M. Leitner, A.J. Lodge, M. Lopez, J. Niu, P. Novak, C. Steier, S.P. Virostek, W.L. Waldron
    LBNL, Berkeley, California, USA
 
  The ALS-U project is a proposed upgrade to the Advanced Light Source (ALS) at Berkeley Lab that aims to deliver diffraction limited performance in the soft x-ray range. By lowering the horizontal emittance to about 70 pm rad, the brightness for soft x-rays will increase two orders of magnitude compared to the current ALS. The design utilizes a nine-bend achromat lattice, with reverse bending magnets and on-axis swap-out injection utilizing an accumulator ring. This paper will describe the preliminary plans for the installation of the new three-bend achromat accumulator ring (AR) in the existing tunnel and for replacing the current storage ring with the new nine-bend achromat lattice. The AR will be installed during regular maintenance shutdowns while the ALS continues to operate. The SR will be replaced during a nine months installation period followed by three months of commissioning during the twelve darktime period.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW088  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW093 Compensation of Insertion Device Induced Emittance Variations in Ultralow Emittance Storage Rings by a Dispersion Bump in a Wiggler 1627
 
  • F. Sannibale, M.P. Ehrlichman, T. Hellert, S.C. Leemann, D. Robin, C. Steier, C. Sun, M. Venturini
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231.
Multi-bend achromat lattices allow for the design of extremely low emittance electron storage rings and hence for the realization of extremely high- brightness X-ray photon sources. In these new rings, the beam energy lost to radiation in the insertion devices (IDs) is often comparable to that lost in the ring dipole magnets. This implies that with respect to the typical 3rd generation light source, these new machines are more sensitive to the energy loss variations randomly occurring as the many users independently operate the gap of their IDs. The consequent induced variations in radiation damping time, equilibrium emittance, and transverse beam sizes at the radiation point sources can be significant and degrade the experimental performance in some of the beam-lines. In this paper we describe and discuss a possible method to compensate for such emittance variations by using a variable dispersion bump localized inside a fixed gap wiggler.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW093  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW097 Design Progress of ALS-U, the Soft X-ray Diffraction Limited Upgrade of the Advanced Light Source 1639
 
  • C. Steier, Ph. Amstutz, K.M. Baptiste, P.A. Bong, E.S. Buice, P.W. Casey, K. Chow, S. De Santis, R.J. Donahue, M.P. Ehrlichman, J.P. Harkins, T. Hellert, M.J. Johnson, J.-Y. Jung, S.C. Leemann, R.M. Leftwich-Vann, D. Leitner, T.H. Luo, O. Omolayo, J.R. Osborn, G. Penn, G.J. Portmann, D. Robin, F. Sannibale, C. Sun, C.A. Swenson, M. Venturini, S.P. Virostek, W.L. Waldron, E.J. Wallén
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The ALS-U project to upgrade the Advanced Light Source to a multi bend achromat lattice received CD-1 approval in 2018 marking the end of its conceptual design phase. The ALS-U design promises to deliver diffraction limited performance in the soft x-ray range by lowering the horizontal emittance to about 70 pm rad resulting in two orders of magnitude brightness increase for soft x-rays compared to the current ALS. The design utilizes a nine bend achromat lattice, with reverse bending magnets and on-axis swap-out injection utilizing an accumulator ring. This paper presents recent design progress of the accelerator, as well as new results of the mature R&D program.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW097  
About • paper received ※ 21 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW110 Feasibility Study of Beam Profile Measurements Using Interferometer and Diffractometer Techniques for ALS-U 2752
 
  • C. Sun, S. De Santis, D. Filippetto, F. Sannibale, C. Steier
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the Director Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
ALS-U is an ongoing upgrade of Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. The upgraded ALS will replace the existing Triple-Bend Achromat (TBA) storage ring lattice with a compact Multi-Bend Achromat (MBA) lattice. This MBA technology allows us to tightly focus electron beams down to about 10 μm to reach diffraction limit in a soft x-ray region. The beam size measurement is a challenging task for this tightly focused beam. The interferometer technique with visible light from synchrotron radiation has been developed in many facilities to measure their beam size at a micrometer-level accuracy. In this paper, we will present the feasibility study of this technique for the ALS-U storage ring beam size measurement.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW110  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW111 Design of Booster-to-Accumulator Transfer Line for Advanced Light Source Upgrade 2756
 
  • C. Sun, Ph. Amstutz, T. Hellert, J.-Y. Jung, S.C. Leemann, J.R. Osborn, M. Placidi, C. Steier, C.A. Swenson, M. Venturini, W. Wan
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the Director Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
For the Advanced Light Source Upgrade, an on-axis swap-out injection is applied to exchange bunch trains between the storage ring and the accumulator ring. To replenish the accumulator ring before the swap-out injection, an electron beam from Linac is first injected into the ALS booster to ramp up the energy, and then transported to the accumulator through the Booster-to-Accumulator (BTA) transfer line. The design of the BTA transfer line is a challenging task as it has to fit within a tight space while accommodating the booster and accumulator rings at different elevations. Moreover, the BTA design needs to meet the optics boundary conditions and ideally minimize the size requirements of vacuum-chamber apertures. In this paper, we will present a design option of the BTA transfer line, which meets both space limitations and beam physics requirements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW111  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)