Author: Steck, M.
Paper Title Page
MOPGW022 Achromatic Isochronous Mode of the ESR at GSI 124
 
  • S.A. Litvinov, M. Steck
    GSI, Darmstadt, Germany
 
  The isochronous optics of the ESR is a unique ion-optical setting in which the ring is operated as a Time-of-Flight Mass-Spectrometer and is used for direct mass measurements of short-lived exotic nuclei. The present isochronous optics had been performed only making a negative dispersion in the straight sections of the ESR of about -7 m. This negative dispersion makes the injection into the ESR very complicated and strict the transmission of the ions in the ring. Moreover, the non-achromatism of the ESR brings a supplementary uncorrectable first-order transverse contribution to the revolution time. In order to make the ESR achromatic, to improve injection and the isochronicity a new achromatic isochronous optics has been calculated and will be presented here in details.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW022  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS100 The ESR Closed Orbit Calculation and Simulation 3349
SUSPFO031   use link to see paper's listing under its alternate paper code  
 
  • S. Dastan, S. Dastan, R. Saffari
    University of Guilan, Rasht, Iran
  • S. Dastan, J. Rahighi
    ILSF, Tehran, Iran
  • S. Livinov, M. Steck
    GSI, Darmstadt, Germany
 
  The commissioning of the ESR with a new control system based on the LSA (LHC System Architecture) has started recently. This new control system is under development and considers all aspects of the expected functionality to operate the GSI/FAIR accelerators and incorporates the present GSI controls infrastructure*. Two years ago, the old control system which was based on outdated computers and operating system, was discontinued. So, both the heavy ion synchrotron SIS-18 and the Experimental Storage Ring (ESR) operation from now on have to be performed with the new FAIR control system. In order to introduce an improved model to the control system change, new calculations and simulations for SIS and ESR are necessary. In this paper we summarize the results of closed orbit calculations for the ESR which are done with three different codes, namely: ELEGANT*, MAD-X and MIRKO. Also, because the results of ELEGANT and MAD-X in this issue are similar to each other, we present ELEGANT results in the report.
* R. Bär, DEVELOPMENT OF A NEW CONTROL SYSTEM FOR THE FAIR ACCELERATOR COMPLEX AT GSI. Kobe.
** Borland, M., elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS100  
About • paper received ※ 29 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)