Paper | Title | Page |
---|---|---|
MOPGW046 | Proton Beam Steering for the Experimental Muon Source at CSNS | 193 |
|
||
Experimental Muon Source (EMuS) is a muon source to be built at China Spallation Neutron Source (CSNS). The EMuS baseline design adopts a stand-alone target sitting in capture superconducting solenoids, and the muon beam is extracted in the forward direction. In the same time the spent protons are also extracted from the target station and guided to an external. Because there is an angle of 15 degrees between the axis of solenoids and the proton direction, the protons will be deviated by the solenoid field. A pair of correction magnets in front of the solenoids is used to align the incoming proton beam to the target and also guide the spent protons to the beam dump. As the target station is design to work at different field level, this increases the complexity of the proton beam transport. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW046 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPRB026 | High-Quality Muon Beam Production Based on Superconducting Solenoids | 630 |
|
||
Funding: This work is supported by the Science Foundation of The Chinese Academy of Sciences and National Natural Science Foundation of China (No. 11875281) In labs, muon beams are produced by protons hitting targets. The initial phase space of the muon beam is extremely large. In general, two types of muon collection methods have been used in the world. One is to put the muon production target in a superconducting solenoid, and low-energy muons are collected from the back of the target, then transported through a bent solenoid. In this way, a high-intensity muon beam can be collected, but the energy spread is wide and the beam polarization is low. For most muSR applications a surface muon beam with narrow energy bite and high polarization is required. Most muSR facilities are built with collecting magnets by the side of the target, in this way only a small fraction of muons with low emittance are collected and transported downstream. In this work we outline a muon collection method based on superconducting solenoid. Instead of using bent solenoids, a matching section with a dipole magnet is used to select muons with a certain momentum and match to downstream beamliines. A high-quality muon beam can be achieved with a high intensity and polarization. Such a method can be adapted to the MUSIC, Mu2e, and COMET muon beamlines after their dedicate experiments and convert the beamlines into a high quality muSR facility. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB026 | |
About • | paper received ※ 30 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPGW040 | Decay Muon Beamline Design for EMuS | 3670 |
|
||
Funding: This work is supported by the Chinese Academy of Sciences. The beamline design philosophies and simulation re-sults of the decay muon on Experimental Muon Source (EMuS) are reported in this paper. The beamline is com-posed of solenoids to keep large acceptance, and has been optimized for 45, 150 and 450 MeV/c decay muon re-spectively according to the π spectra optimization results from target station. Decay muons from 45 to 150 MeV/c are designed for μSR applications, and 150 to 450 MeV/c are designed for muon imaging, which is unique on the high momentum perspective. Negative muons from 45 to 150 MeV/c are designed for muonic applications. The momentum range of decay muon is tuneable between 45 and 450 MeV/c. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW040 | |
About • | paper received ※ 01 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |