Author: Snuverink, J.
Paper Title Page
WEPGW079 A Channel Access Software Platform for Beam Dynamics Applications in Scripting Languages 2661
 
  • J.T.M. Chrin, M. Aiba, J. Snuverink
    PSI, Villigen PSI, Switzerland
 
  To facilitate the seamless integration of EPICS (Experimental Physics and Industrial Control System) into high-level applications in particle accelerators, a dedicated modern C++ Channel Access Interface (CAFE) library* provides a comprehensive and user-friendly interface to the underlying control system. Functionality is provided for synchronous and asynchronous interaction of single and composite groups of channels, coupled with an abstract layer tailored towards beam dynamics applications and complex modelling of virtual accelerators. Equivalent consumable solutions in scripting and domain-specific languages can then be accelerated by providing bindings to the relevant methods of the interface platform. This is exemplified by CAFE’s extensive MATLAB interface, incarnated through a single MATLAB executable (mex) file, and a high performance Python interface written in the Cython programming language. A number of gratifying particularities specific to these language extension modules are revealed.
* http://cafe.psi.ch
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW079  
About • paper received ※ 15 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS058 BDSIM: Recent Developments and New Features Beyond V1.0 3259
 
  • L.J. Nevay, A. Abramov, J. Albrecht, S.E. Alden, S.T. Boogert, H. Garcia Morales, S.M. Gibson, W. Shields, S.D. Walker
    JAI, Egham, Surrey, United Kingdom
  • J. Snuverink
    PSI, Villigen PSI, Switzerland
 
  BDSIM is a program that creates a 3D model of an accelerator from an optical beam line description using a suite of high energy physics software including Geant4, CLHEP and ROOT. In one single simulation the passage of particles can be tracked accurately through an accelerator including the interaction with the accelerator material and subsequent secondary radiation production and transport. BDSIM is regularly used to simulate beam loss and energy deposition as well as machine detector interface studies. In this paper we present the latest developments beyond BDSIM V1.0 added for ongoing studies. For simulation of collimation systems several new additions are described including new element geometry, enhanced sensitivity and output information. The output has been further enhanced with aperture impact information and dose information from scoring meshes. As well as supporting the full suite of Geant4 physics lists, a new user interface is described allowing custom physics lists and user components to be easily included in BDSIM. New undulator, crystal collimator and wire-scanner elements are also described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS058  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)