Author: Skaritka, J.
Paper Title Page
TUXXPLS1
SRF Gun with Warm Photocathode  
 
  • I. Pinayev, I. Ben-Zvi, J.C. Brutus, T. Hayes, Y.C. Jing, V. Litvinenko, J. Ma, K. Mihara, G. Narayan, F. Severino, K. Shih, J. Skaritka, E. Wang, G. Wang
    BNL, Upton, Long Island, New York, USA
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The 113 MHz superconducting gun is used an electron source for the coherent electron cooling experiment. The unique feature of the gun is that a photocathode is held at room temperature. It allowed to preserve the quantum efficiency of Cs2KSb cathode which is adversely affected by cryogenic temperatures. Relatively low frequency permitted fully realize the accelerating field gradient what in in turn helps to achieve 10 nC charge and 0.3 microns normalized emittance. We present the achieved performance an operational experience as well.
 
slides icon Slides TUXXPLS1 [6.786 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS078 Coherent Electron Cooling (CeC) Experiment at RHIC: Status and Plans 2101
 
  • V. Litvinenko, K. Mihara
    Stony Brook University, Stony Brook, USA
  • Z. Altinbas, J.C. Brutus, A. Di Lieto, D.M. Gassner, T. Hayes, P. Inacker, J.P. Jamilkowski, Y.C. Jing, R. Kellermann, J. Ma, G.J. Mahler, M. Mapes, R.J. Michnoff, T.A. Miller, M.G. Minty, G. Narayan, M.C. Paniccia, D. Phillips, I. Pinayev, S.K. Seberg, F. Severino, J. Skaritka, L. Smart, K.S. Smith, Z. Sorrell, R. Than, J.E. Tuozzolo, E. Wang, G. Wang, Y.H. Wu, B.P. Xiao, T. Xin, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
  • K. Shih
    SBU, Stony Brook, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and NSF Grant No. PHY-141525
We will present currents status of the CeC experiment at RHIC and discuss plans for future. Special focus will be given to unexpected experimental results obtained during RHIC Run 18 and discovery of a previously unknown type of microwave instability. We called this new phenomenon micro-bunching Plasma Cascade Instability (PCI). Our plan for future experiments includes suppressing this instability in the CeC accelerator and using it as a broad-band amplifier in the CeC system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS078  
About • paper received ※ 19 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS103 The Progress of High Current High Bunch Charge Polarized Electron HVDC Gun 2160
 
  • E. Wang, I. Ben-Zvi, R.F. Lambiase, W. Liu, O.H. Rahman, J. Skaritka, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
  • I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The high current and high bunch charge polarized electron source is essential for cost reduction of eRHIC. It aims to deliver electron beam with 10 mA average current and 5.3 nC bunch charge. We analyzed the mechanism of cathode degradation and proposed using a large strain superlattice GaAs photocathode in a high voltage DC gun to increase the charge lifetime above kilo Coulomb. The gun has been designed and fabricated and expected to start commissioning by the mid of this year. In this paper, we will present the modeling of ion back bombardment and cathode degrading. We proposed an anode offset scheme to increase cathode lifetime. Also, we will describe the details of gun design and the strategies to demonstrate high current high charge polarized electron beam from this source.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS103  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)