Paper |
Title |
Page |
TUPRB023 |
Considerations for the Ultrahard X-ray Undulator Line of the European XFEL |
1732 |
|
- E. Schneidmiller, V. Balandin, W. Decking, M. Dohlus, N. Golubeva, D. Nölle, M.V. Yurkov, I. Zagorodnov
DESY, Hamburg, Germany
- G. Geloni, Y. Li, S. Molodtsov, J. Pflüger, S. Serkez, H. Sinn, T. Tanikawa, S. Tomin
EuXFEL, Hamburg, Germany
|
|
|
The European XFEL is a multi-user X-ray FEL facility based on superconducting linear accelerator. Presently, three undulators (SASE1, SASE2, SASE3) routinely deliver high-brightness soft- and hard- X-ray beams for users. There are two empty undulator tunnels that were originally designed to operate with spontaneous radiators in the range 20-90 keV. We consider, instead a possible installation of two FEL undulators. One of them (SASE4) is proposed for operation in a standard (7-25 keV) range as well as in ultrahard (25-100 keV) regime. We discuss a possible location and length of SASE4, modifications of electron beam transport, beam dynamics, choice of undulator technology, different operation modes (SASE and advanced lasing concepts) etc.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB023
|
|
About • |
paper received ※ 14 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPRB025 |
Harmonic Lasing of the European XFEL in the Angstrom Regime |
1740 |
|
- E. Schneidmiller, F. Brinker, W. Decking, D. Nölle, M.V. Yurkov, I. Zagorodnov
DESY, Hamburg, Germany
- N. Gerasimova, J. Grünert, N.G. Kujala, J. Laksman, Y. Li, J. Liu, Th. Maltezopoulos, I. Petrov, L. Samoylova, S. Serkez, H. Sinn, F. Wolff-Fabris
EuXFEL, Schenefeld, Germany
|
|
|
Harmonic lasing in XFELs is an opportunity to extend the photon energy range of existing and planned X-ray FEL user facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam. Another interesting application is Harmonic Lasing Self-Seeding (HLSS) that allows to improve longitudinal coherence and spectral power of a Self-Amplified Spontaneous Emission (SASE) FEL. This concept was successfully tested at FLASH2 in the range of 4.5 - 15 nm and at PAL XFEL at 1 nm. In this contribution we present recent results from the European XFEL where we successfully demonstrated operation of HLSS FEL at 5.9 A, thus pushing harmonic lasing for the first time into the Angstrom regime.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB025
|
|
About • |
paper received ※ 09 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|