Author: Singh, B.
Paper Title Page
TUPGW077 Impact of the DIAD Wiggler and ’Missing-sextupole’ Optics on the Diamond Storage Ring 1581
 
  • I.P.S. Martin, R. Bartolini, B. Singh
    DLS, Oxfordshire, United Kingdom
 
  In order to generate space for a short, out-of-vacuum multipole wiggler for the DIAD beamline, a single sextupole was removed from one of the DBA arcs in the Diamond Storage Ring during June 2018. The removal of this sextupole presented a number of challenges to the operation of the storage ring, requiring a re-optimisation of the remaining sextupole strengths*, a change in tune-point and modification of the orbit and coupling correction schemes. In this paper we describe the implementation of these changes, and provide an assessment of the impact that the installed wiggler has made on the storage ring parameters.
* B. Singh et al. ’Studies to Install a Multipole Wiggler by Removing a Chromatic Sextupole in Diamond Storage Ring’, Proc. IPAC 2016, Busan, Korea, paper THPMR050, (2016)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW077  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW079 Exploratory Lattice Design Studies for Diamond-II 1589
 
  • B. Singh, R. Bartolini, J. Bengtsson, H. Ghasem, I.P.S. Martin
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  We pursue Robust Design of a Ring-Based Synchrotron Light Source as a System. In particular, the Design Phi-losophy is based on: ’ To Control the Nonlinear Dynamics: Control the Linear Optics. In particular, by: ’ Optimal Control of Natural Chromaticity. ’ ’-I Transformer’ between Chromatic Sextupoles for Unit Cell. ’ Higher-Order-Achromat for Super Period. In addition, by pushing the Requirements for Robust & Efficient Injection ’Upstream’, i.e., by considering On-Axis Injection, and by utilizing Reverse Bends (to trans-cend the reductionist Theoretical Minimum Emittance Cell), either: ’ the Natural Emittance can be reduced further, ’ or the Touschek Lifetime can be improved. Bottom line, a Design Choice.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW079  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW080 Alternative Lattice Design for Diamond-II 1593
 
  • M. Korostelev
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • B. Singh
    DLS, Oxfordshire, United Kingdom
 
  Plans for upgrade of the Diamond Light Source aim to reduce beam emittance by a factor of 20 or better. This is motivated by demand for photon flux with significantly high brightness and transverse coherence. The baseline lattice design for the Diamond-II upgrade has been recently proposed, however alternative design are under investigation to reduce the emittance even further. This paper presents a new lattice design based on implementation of bending magnets with transverse field gradient only.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW080  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP043 Injection Studies for the Proposed Diamond-II Storage Ring 2430
 
  • I.P.S. Martin, R. Bartolini, H. Ghasem, J.P. Kennedy, B. Singh
    DLS, Oxfordshire, United Kingdom
 
  The baseline design for the Diamond-II storage ring consists of a Modified-Hybrid 6-Bend Achromat, combining the ESRF-EBS low-emittance cell design with the DDBA mid-straight concept*,**. This cell design provides sufficient dynamic aperture to permit an off-axis injection scheme, provided the emittance of the injected beam is sufficiently low. In this paper we present simulations of an injection scheme using the anti-septum concept***, along with the design of an upgrade to the existing booster synchrotron. Alternate injection strategies are also discussed.
*ESRF Technical Design Study, ’The Orange Book’, (2014)
**R. Bartolini et al., PRAB 21, 050701, (2018)
***C. Gough, M. Aiba, Proc. IPAC 2017, Copenhagen, Denmark, paper MOPIK104, (2017)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP043  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW071 Genetic Optimisation of Beamline Design for DIAMOND 3753
 
  • F. Bakkali Taheri, M. Apollonio, R. Bartolini, B. Singh
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini, J. Li
    JAI, Oxford, United Kingdom
  • R. Bartolini
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
 
  The problem of optimisation of beamline structures is studied, from the point of view of multi-objective genetic algorithms. While this approach has been successfully used in the exploration of potential particle accelerator lattices, it has never been applied to beamline design. In this paper, the Non-Dominated Sorting Genetic Algorithm II (NGSA II) is used to optimize a structure where photons are assumed to propagate through the optical elements according to the wavefront model as implemented in SRW. It is shown that appropriate objective functions can help to set up an interesting set of parameters, with competitive computational resources compared to the traditional approach. Examples illustrating this optimization method are shown in the context of DIAMOND.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW071  
About • paper received ※ 13 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)