Author: Shimomura, K.
Paper Title Page
MOPRB018 Conceptual Design of Negative-Muon Decelerator for Material Science 610
 
  • C. Ohmori, M. Otani, K. Shimomura
    KEK, Tokai, Ibaraki, Japan
  • T. Takayanagi
    JAEA/J-PARC, Tokai-mura, Japan
 
  In 2018, a Negative-Muon Spin Rotation and Relaxation technique was developed in J-PARC Material and Life Science Facility. It is a novel scheme to investigate the motion of hydrogens in the chemicals and materials. To study small samples, the surface of materials and thin foils, a low energy negative muon beam is required. To decelerate intense 300-keV muons to 15-keV, we propose a system which consists of pulse generators and multi-gap induction decelerators. In this design, an inductive adder scheme is considered to use for the high voltage pulse source. High impedance magnetic alloy ring cores will be loaded in the decelerator cells. The high impedance cores which have much larger size than those for public use were developed for J-PARC RF systems and used for many applications including CERN booster RF, anti-proton deceleration and medical accelerator. In this paper, we present a conceptual design of muon deceleration system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB018  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXXPLS2 Negative Muonium Ion Production With a C12A7 Electride Film 1175
 
  • M. Otani, Y. Fukao, K. Futatsukawa, N. Kawamura, T. Mibe, Y. Miyake, K. Shimomura, T. Yamazaki
    KEK, Ibaraki, Japan
  • K. Hasegawa, Y. Kondo, T. Morishita
    JAEA/J-PARC, Tokai-mura, Japan
  • T. Iijima, Y. Sue
    Nagoya University, Graduate School of Science, Chikusa-ku, Nagoya, Japan
  • H. Iinuma, Y. Nakazawa
    Ibaraki University, Ibaraki, Japan
  • K. Inami, M. Yotsuzuka
    Nagoya University, Nagoya, Japan
  • K. Ishida
    RIKEN Nishina Center, Wako, Japan
  • R. Kitamura, H.Y. Yasuda
    University of Tokyo, Tokyo, Japan
  • N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  Funding: This work was supported by OSPS KAKENHI Grant Numbers JP15H03666, JP 16H03987, JP18H03707.
Negative muonium ion production is one of methods to cool muons. Since its discovery in 1987 by interactions of muons with a metal foil, it has been discussed that the production efficiency would be improved using a low-work function material. C12A7 (12CaO·7AlO3) was a well-known insulator as a constituent of alumina cement, but was recently confirmed to exhibit electric conductivity by electron doping. The C12A7 electride has lower work function (2.9 eV) and it was reported that nearly the same negative current signal as that with a bi-alkali material coated metal were observed in H formation. In this poster, the negative muonium production measurement with a Al foil and C12A7 electride film will be presented.
 
slides icon Slides TUXXPLS2 [2.680 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUXXPLS2  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW042 Development of the Longitudinal Beam Monitor with High Time Resolution for a Muon LINAC in the J-PARC E34 Experiment 2571
SUSPFO052   use link to see paper's listing under its alternate paper code  
 
  • M. Yotsuzuka, K. Inami
    Nagoya University, Nagoya, Japan
  • K. Futatsukawa, N. Kawamura, T. Mibe, Y. Miyake, M. Otani, K. Shimomura, T. Yamazaki
    KEK, Ibaraki, Japan
  • K. Hasegawa, R. Kitamura, T. Morishita
    JAEA/J-PARC, Tokai-mura, Japan
  • T. Iijima, Y. Sue
    Nagoya University, Graduate School of Science, Chikusa-ku, Nagoya, Japan
  • T. Iijima
    KMI, Nagoya, AIchi Prefecture, Japan
  • H. Iinuma, Y. Nakazawa
    Ibaraki University, Ibaraki, Japan
  • Y. Kondo
    JAEA, Ibaraki-ken, Japan
  • N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • H.Y. Yasuda
    University of Tokyo, Tokyo, Japan
 
  Funding: This work is supported by JSPS KAKENHI Grant Numbers JP15H03666, JP15H05742, JP16H03987, JP16J07784, JP18H03707 and JP18H05226.
The J-PARC E34 experiment aims to measure the muon anomalous magnetic moment and the electric dipole moment with a high precision. In this experiment, ultra-slow muons generated from thermal muonium production and laser resonance ionization are accelerated in a multistage muon linac. In order to satisfy the experimental requirements, a suppression of the emittance growth between different accelerating cavities is necessary, and the transverse and longitudinal beam matching is important. Longitudinal beam monitor has to measure the bunch width with a precision of 1% corresponding to several tens of picoseconds. In addition, the beam monitor should be sensitive to a single muon, because the beam intensity during the commissioning is lower than the designed intensity. Therefore, we are developing a longitudinal beam monitor using a microchannel plate (MCP), and a measurement system using photoelectrons to estimate the performance of the beam monitor. On November 2018, the beam monitor has been successfully used in the muon RF acceleration test at the J-PARC. In this presentation, the results of the performance evaluation for this beam monitor are reported.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW042  
About • paper received ※ 30 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)