Author: Sheehy, S.L.
Paper Title Page
MOXPLM1
Meeting Future Challenges in Accelerators: Innovation, Collaboration and Communication.  
 
  • S.L. Sheehy
    JAI, Oxford, United Kingdom
 
  Accelerator science crosses from curiosity-driven research all the way through to practical applications. For more than 100 years, innovation in accelerator physics and engineering have provided cutting edge instruments capable of understanding the Universe. Today, at the energy and intensity frontiers, machines are getting so large and complex that they take decades to realise. However, there are further challenges of increasing importance such as reliability, cost and sustainability. Some of these challenges are most pressing in our ’everyday’ accelerators used in medicine and industry. In this talk, I will use historical and contemporary examples to build on the themes of innovation, collaboration and communication, providing an overview of the ways in which our field works to both explore the Universe and make an impact in society.  
slides icon Slides MOXPLM1 [5.056 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB063 Longitudinal Tomography in a Scaling FFA 719
 
  • D.J. Kelliher, C. Brown, J.-B. Lagrange, S. Machida, C.R. Prior, C.T. Rogers
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • Y. Ishi, Y. Kuriyama, H. Okita, T. Uesugi
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • S.L. Sheehy
    JAI, Oxford, United Kingdom
 
  In a synchrotron the rate of acceleration is limited by the ramp rate of the bending field. There is no such constraint in a Fixed Field alternating gradient Accelerator (FFA), allowing a much higher repetition rate and novel modes of operation such as beam stacking. It is of interest to obtain a picture of the longitudinal phase space from experimental data in order to diagnose the response of the beam to various RF programmes. Longitudinal tomography, already well established in synchrotrons, involves reconstructing the phase space using bunch monitor data obtained for a sufficient number of turns in a synchrotron oscillation. Here we reconstruct the longitudinal phase space using data from the 150 MeV scaling FFA at KURNS, Osaka, Japan.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB063  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS056 Can a Paul Ion Trap Be Used to Investigate Nonlinear Quasi-Integrable Optics? 3251
SUSPFO117   use link to see paper's listing under its alternate paper code  
 
  • L. Martin, S.L. Sheehy
    JAI, Oxford, United Kingdom
  • D.J. Kelliher
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  Here we describe the design of an experimental setup using the IBEX Paul trap to test nonlinear quasi-integrable optics, an accelerator lattice design to create stable high intensity beams. In 2010 Danilov and Nagaitsev found a realisable nonlinear potential which can create integrable optics in an accelerator when embedded in a linear lattice that provides round beams. This concept will be tested in the IOTA ring at Fermilab. It is important to further test this concept over a wide parameter range, preferably in a simplified experimental setup such as IBEX. The IBEX Paul trap is capable of replicating the transverse dynamics of a high intensity accelerator without dispersion or chromaticity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS056  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS057 Recent Studies of the Resonances at a Cell Tune of 0.25 Using the Ibex Paul Trap 3255
 
  • L. Martin, S.L. Sheehy
    JAI, Oxford, United Kingdom
  • D.J. Kelliher
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  We use the IBEX linear Paul trap to study the resonance at a cell tune of \frac{1}{4} with both equal and unequal transverse tunes, at a range on intensities. We compare this experimental result to simulation using the PIC code Warp. We find that the experimental result differs from the simulation, which may be explained by the ion loss in the IBEX experiment, which more closely replicates a real accelerator. Knowledge of the tune corresponding to greatest beam loss is important for the design of future high intensity machines.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS057  
About • paper received ※ 30 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP038 Collaborative Strategies for Meeting the Global Need for Cancer Radiation Therapy Treatment Systems 3526
 
  • M. Dosanjh, P. Collier, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
  • A. Aggarwal
    KCL, London, United Kingdom
  • D. Angal-Kalinin, P.A. McIntosh, B.L. Militsyn
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • R. Apsimon
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • S.T. Boogert
    Royal Holloway, University of London, Surrey, United Kingdom
  • G. Burt
    Lancaster University, Lancaster, United Kingdom
  • N. Coleman, D.A. Pistenmaa
    ICEC, Washington, DC, USA
  • A.W. Cross
    USTRAT/SUPA, Glasgow, United Kingdom
  • I.V. Konoplev, S.L. Sheehy
    JAI, Oxford, United Kingdom
 
  The idea of designing affordable equipment and developing sustainable infrastructures for delivering radiation treatment for patients with cancer in countries that lack resources and expertise stimulated a first International Cancer Expert Corps (ICEC) championed, CERN-hosted workshop in Geneva in November 2016. Which has since been followed by three additional workshops involving the sponsorship and support from UK Science and Technology Facilities Council (STFC). One of the major challenges in meeting this need to deliver radiotherapy in low- and middle-income countries (LMIC) is to design a linear accelerator and associated instrumentation system which can be operated in locations where general infrastructures and qualified human resources are poor or lacking, power outages and water supply fluctuations can occur frequently and where climatic conditions might be harsh and challenging. In parallel it is essential to address education, training and mentoring requirements for current, as well as future novel radiation therapy treatment (RTT) systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP038  
About • paper received ※ 11 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP039 How Robust Are Existing Medical Linacs in Challenging Environments? A Study of Down Time and Failure Causes. 3530
 
  • S.L. Sheehy, L. Wroe
    JAI, Oxford, United Kingdom
  • A.J. Egerton
    Egerton Consulting Ltd, Minety, Malmesbury, Wiltshire, United Kingdom
  • A. Steinberg
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
 
  There is a severe lack of radiotherapy linear accelerators (LINACs) in Low- and Middle-Income countries (LMICs), limiting capacity for cancer care in these regions. Anecdotally, operating high tech accelerators in environments with power fluctuations, harsh climatic conditions and geographic isolation leads to large failure rates and downtime. To guide future developments, this study presents a data-driven approach to collect statistical data on LINAC downtime and failure modes, comparing to a simple availability model.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP039  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)