Author: Senes, E.
Paper Title Page
MOPTS100 Transverse Emittance Measurement in the CERN Proton Synchrotron in View of Beam Production for the High-Luminosity LHC 1106
SUSPFO107   use link to see paper's listing under its alternate paper code  
 
  • E. Senes, J. Emery, V. Forte, M.A. Fraser, A. Guerrero, A. Huschauer, F. Roncarolo, J.L. Sirvent, P.K. Skowroński, F. Tecker
    CERN, Meyrin, Switzerland
 
  In the framework of the LHC Injectors Upgrade project the improvements required to achieve the parameters of the future beams for the High-Luminosity LHC are being studied and implemented. In order to deliver high brightness beams, control over the beam intensity and emittance is fundamental. Therefore, a highly accurate and reliable transverse emittance measurement is essential. Presently at the CERN Proton Synchrotron, the only operationally available emittance monitors not impacting the facility beam production are the flying wire scanners used to measure the circulating beam profile. The wire scanners will be replaced with a new generation in the next two years and a prototype is already installed. The prototype has been commissioned with beams featuring a wide range of intensities and emittances. This paper evaluates the performance of the prototype with respect to the present system via beam-based measurements. The transverse emittance measurement is discussed, considering the different potential error contributions to the measurement, such as knowledge of the machine optics and the dispersive contribution to the beam size.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS100  
About • paper received ※ 02 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS101 Study of the Transverse Emittance Blow-Up Along the Proton Synchrotron Booster Cycle During Wire Scanner Operation 1110
 
  • A. Santamaría García, F. Antoniou, H. Bartosik, J.A. Briz Monago, G.P. Di Giovanni, A. Guerrero, J.R. Hunt, B. Mikulec, F. Roncarolo, E. Senes, V. Vlachoudis
    CERN, Geneva, Switzerland
  • E. Senes
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
 
  Transverse emittance measurements with wire scanners have been extensively studied across the accelerator complex at CERN due to their important role in characterizing the beam and their complicated modeling. In recent years, this topic has been of particular interest for the LHC Injectors Upgrade (LIU) project, where a tight transverse emittance blow-up budget between the Proton Synchrotron Booster (PSB) and the Proton Synchrotron (PS) is imposed to assure the required beam brightness for the High Luminosity LHC (HL-LHC). In order to maintain a high brightness beam, any source of emittance blow-up along the PSB cycle needs to be identified and mitigated. While wire scanners have been mostly used at extraction energy in the PSB, they can also operate along the energy cycle. The scattering of the protons with the wire increases considerably at lower energies, leading to an overestimation of the beam emittance. In this contribution we present the most recent studies, focusing on precisely quantifying the blow-up created by the flying wire with measurements in an optimized set-up and compared to FLUKA simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS101  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP025 Matching Studies Between CERN PSB and PS Through Multi-Turn Beam Profile Acquisitions 2367
 
  • M.A. Fraser, Y. Dutheil, V. Forte, A. Guerrero, A. Huschauer, A. Oeftiger, S. Ogur, F. Roncarolo, E. Senes, F. Tecker
    CERN, Geneva, Switzerland
 
  In the framework of the LHC Injectors Upgrade (LIU) project, the investigation and quantification of the optics mismatch between the CERN Proton Synchrotron Booster (PSB) and PS is a crucial step in understanding the source of horizontal emittance growth between the two machines. Extensive studies were carried out to estimate the mismatch from single-pass measurements in the transfer line and to rematch the transfer line to reduce the dispersive mismatch at PS injection while keeping the betatron matching unaltered. This paper presents the results of the data analysis of more recent multi-turn measurements, which profited from a new turn-by-turn beam profile monitor in the PS ring, to assess the achieved level of matching and corresponding emittance growth. The results confirm the improved matching and demonstrate the feasibility of the multi-turn technique as a fundamental tool that will be important for the recommissioning of the renovated transfer line after Long Shutdown 2.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP025  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)