Author: Saez de Jauregui, D.
Paper Title Page
TUPGW017 Superconducting Undulator Coils with Period Length Doubling 1426
 
  • S. Casalbuoni, N. Glamann, A.W. Grau, T. Holubek, D. Saez de Jauregui
    KIT, Eggenstein-Leopoldshafen, Germany
 
  Funding: Work supported by the German government in the BMBF-project Superconducting ’Insertion Device Technologies for Ultra-Low-Emittance Light Sources’ (05K12CK1)
Only since few years it has been demonstrated experimentally that NbTi based superconducting undulators (SCUs) have a higher peak field on axis for the same gap and period length in operation with electron beam with respect to permanent magnet undulators (even the ones in vacuum and cooled to cryogenic temperatures). Another advantage of NbTi based SCUs with respect to permanent magnet devices is radiation hardness, widely demonstrated for NbTi magnets, which is and will become an increasingly important issue with the small gaps in the newest machines as round beam storage rings and FELs. Moreover, SCU technology allows switching of the period length by changing the current direction in one of separately powered subset of winding packages of the superconducting coils. This feature further broadens the energy range of the emitted photons, required by the different beamlines. To this end 0.5 m long superconducting undulator coils with switchable period length between 17 mm and 34 mm have been developed. In this contribution we describe the design and report on the quench tests, as well as on the magnetic field measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW017  
About • paper received ※ 25 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB015 Cryogenic, in-Vacuum Magnetic Measurement Setup for Superconducting Undulators 1709
 
  • A.W. Grau, S. Casalbuoni, N. Glamann, D. Saez de Jauregui
    KIT, Eggenstein-Leopoldshafen, Germany
 
  The magnetic field quality has a strong impact on the performance of insertion devices (IDs) when installed in synchrotron light sources. Superconducting IDs have the advantage to produce a higher magnetic peak field for a given gap and period length than IDs assembled with permanent magnets. Before installation of a superconducting ID in a synchrotron light source it is of fundamental importance to characterize the magnetic properties by accurate field and field integral measurements. We follow this aim within our R&D program for superconducting undulators (SCUs). In this contribution, we describe the equipment and the challenges of a cryogenic, in vacuum measurement setup to perform magnetic measurements of the local field, the field integrals and the multipole components of in vacuum SCUs assembled in the final cryostat.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB015  
About • paper received ※ 29 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)