Paper | Title | Page |
---|---|---|
MOPGW100 | Bypass Design for Testing Optical Stochastic Cooling at the Cornell Electron Storage Ring (CESR) | 360 |
SUSPFO048 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: NSF-1734189 DGE-1650441 Optical Stochastic Cooling (OSC) is a promising method for cooling very dense stored particle beams through the interference of radiation created in an upstream ’pickup’ wiggler and a downstream ’kicker’ wiggler. By correlating a particle’s path length via a bypass between the two wigglers with its betatron coordinates in the pickup, the particle will receive a kick in energy which, through coupling introduced by non-zero horizontal dispersion in the kicker, can reduce its betatron amplitude, thus cooling the beam. A proof-of-principle test of this technique is being planned at the Cornell Electron Storage Ring (CESR). In addition to maintaining standard requirements such as a large dynamic aperture and acceptable lattice functions throughout the ring, the design of the bypass is guided by the mutually competing goals of maximizing the cooling rate while maintaining a sufficiently large cooling acceptance with properly-corrected nonlinearities. We present a design of such a bypass and ring optics so as to best achieve these objectives. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW100 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 19 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTS102 | Helical Wiggler Model for Fast Tracking | 3356 |
|
||
Funding: NSF-1734189 DGE-1650441 In order to test the process of Optical Stochastic Cooling (OSC) at the Cornell Electron Storage Ring (CESR), we plan to use helical wigglers as both the pickup and kicker, since the required radiation wavelength of 800nm can be achieved with lower magnetic field strength in helical as compared to planar wigglers. In order to simulate the lattice with such wigglers, it is useful to be able to model the effect of the wiggler on the optics without resorting to direct tracking, which is time-consuming and so ill-suited for the repeated evaluations necessary in running an optimizer. We generate a Taylor map to third order for this element using analytic field expressions, enabling easy determination of the effects of such an element on linear and nonlinear optics. This model is compared with the results of direct tracking and shows good agreement. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS102 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPRB099 | Applications of Dimension-Reduction to Various Accelerator Physics Problems | 4060 |
|
||
Funding: DE-SC 0013571 DGE-1650441 OIA-1549132 Particle accelerators contain hundreds of magnets, making dimension-reduction techniques attractive when attempting to tune them. We apply this procedure to two different problems: correcting the orbit in the Cornell synchrotron and maximizing the dynamic aperture in the Cornell Electron Storage Ring (CESR). Cornell’s rapid cycling synchrotron accepts a 200 MeV beam from the linac and accelerates it to 6 GeV for injection into the CESR. ‘Kicker coils’ (dipole correctors) are used to correct for residual fields which would otherwise cause beam loss at the low energies. In such cases, it is usually advisable to measure and correct the orbit. However, one cannot measure the orbit without first getting the beam to circulate a few hundred times, by which point the low-energy orbit would already be mostly corrected. In order to speed up the process of empirical orbit tuning, we form knobs which have the largest effect on the global orbit error, so that the dimensionality of the space which must be searched may be greatly reduced. A small dynamic aperture in CESR will have adverse effects on beam lifetime and injection efficiency, and so ought to be maximized by tuning sextupoles. However, it is often unclear which sextupoles one ought to tune to alleviate the problem. Moreover, once the chromaticity is properly adjusted, it should not be changed. Since we expect resonance driving terms (RDTs) to have a large impact on the dynamic aperture, we develop sextupole knobs which change the RDTs as much as possible while leaving the chromaticity fixed. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB099 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPRB100 | A Generic Software Platform for Rapid Prototyping of Online Control Algorithms | 4063 |
SUSPFO123 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: US Department of Energy DE-SC 0013571 Algorithmic control of accelerators is an active area of research that promises significant improvements in machine performance. To facilitate rapid algorithm prototyping, we have developed a generic interface between accelerator controls, beam physics modelling software and modern scripting languages. The work-flow of a project using this interface begins with testing algorithms of choice offline in simulation. After off-line testing, the same code can be deployed on real machines via the Experimental Physics and Industrial Control System (EPICS) API. We include noise in our simulations in order to mimic realistic accelerator behaviour and to evaluate robustness of algorithms to experimental uncertainties and long-term drifts. The results of test cases of using this framework are presented, including emittance tuning of the Cornell Electron Storage Ring (CESR), correction of diurnal drift in CESR steering and orbit correction on CESR and the Cornell-BNL ERL Test Accelerator (CBETA). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB100 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |