Paper | Title | Page |
---|---|---|
TUPRB032 | The CompactLight Design Study Project | 1756 |
|
||
Funding: This project has received funding from the European Union’s Horizon2020 research and innovation programme under grant agreement No 777431 The H2020 CompactLight Project (www. CompactLight.eu) aims at designing the next generation of compact X-rays Free-Electron Lasers, relying on very high gradient accelerating structures (X-band, 12 GHz), the most advanced concepts for bright electron photo injectors, and innovative compact short-period undulators. Compared to existing facilities, the proposed facility will benefit from a lower electron beam energy, due to the enhanced undulators performance, and will be significantly more compact, with a smaller footprint, as a consequence of the lower energy and the high-gradient X-band structures. In addition, the whole infrastructure will also have a lower electrical power demand as well as lower construction and running costs. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB032 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPRB107 | The New 1-18 MHz Wideband RF System for the CERN PS Booster | 3063 |
|
||
The LHC Injector Upgrade (LIU) project at CERN prepares the injectors to meet the requirements of the High Luminosity LHC. For protons, it includes the new Linac4, PS Booster (PSB), PS and SPS. Among the major changes concerning the PSB, the extraction energy increase from 1.4 GeV to 2 GeV and the higher beam intensity, made possible by the Linac4 together with the new charge exchange injection system into the PSB (2·1013 protons) strongly affect the RF system requirements. To deal with this more demanding beam operation, a new RF system was designed. It is based on modern magnetic alloy loaded cavities driven by solid-state amplifiers. Its wideband frequency response (1 MHz to 18 MHz) covers all the required frequency schemes. This new RF system has been produced in 2017 and 2018; installation is planned during 2019, the first year of Long Shutdown 2 (LS2) and commissioning foreseen in 2020. Most of the production and testing was outsourced to industry; parts acceptance, cavities assembly and pre-testing was done in-house. A quality assurance plan was established to achieve the required high reliability. This paper describes the procurement, production and testing strategies and methodologies. It also reports the achieved results, system performances and relevant statistics. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB107 | |
About • | paper received ※ 26 April 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |