Author: Rossi, C.
Paper Title Page
TUPRB032 The CompactLight Design Study Project 1756
 
  • G. D’Auria, S. Di Mitri, R.A. Rochow
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • M. Aicheler
    HIP, University of Helsinki, Finland
  • A.A. Aksoy
    Ankara University, Accelerator Technologies Institute, Golbasi, Turkey
  • D. Alesini, M. Bellaveglia, B. Buonomo, F. Cardelli, M. Croia, M. Diomede, M. Ferrario, A. Gallo, A. Giribono, L. Piersanti, B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati, Italy
  • R. Apsimon, A. Castilla
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • J.M. Arnesano, F. Bosco, L. Ficcadenti, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • A. Bernhard, J. Gethmann
    KIT, Karlsruhe, Germany
  • G. Burt
    Lancaster University, Lancaster, United Kingdom
  • M. Calvi, T. Schmidt, K. Zhang
    PSI, Villigen PSI, Switzerland
  • H.M. Castaneda Cortes, J.A. Clarke, D.J. Dunning, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.W. Cross, L. Zhang
    USTRAT/SUPA, Glasgow, United Kingdom
  • G. Dattoli, F. Nguyen, A. Petralia
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • R.T. Dowd, D. Zhu
    AS - ANSTO, Clayton, Australia
  • W.D. Fang
    SINAP, Shanghai, People’s Republic of China
  • A. Faus-Golfe, Y. Han
    LAL, Orsay, France
  • E.N. Gazis, N. Gazis
    National Technical University of Athens, Zografou, Greece
  • R. Geometrante, M. Kokole
    KYMA, Trieste, Italy
  • V.A. Goryashko, M. Jacewicz, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
  • X.J.A. Janssen, J.M.A. Priem
    VDL ETG, Eindhoven, The Netherlands
  • A. Latina, X. Liu, C. Rossi, D. Schulte, S. Stapnes, X.W. Wu, W. Wuensch
    CERN, Geneva, Switzerland
  • O.J. Luiten, P.H.A. Mutsaers, X.F.D. Stragier
    TUE, Eindhoven, The Netherlands
  • J. Marcos, E. Marín, R. Muñoz Horta, F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • G. Taylor
    The University of Melbourne, Melbourne, Victoria, Australia
 
  Funding: This project has received funding from the European Union’s Horizon2020 research and innovation programme under grant agreement No 777431
The H2020 CompactLight Project (www. CompactLight.eu) aims at designing the next generation of compact X-rays Free-Electron Lasers, relying on very high gradient accelerating structures (X-band, 12 GHz), the most advanced concepts for bright electron photo injectors, and innovative compact short-period undulators. Compared to existing facilities, the proposed facility will benefit from a lower electron beam energy, due to the enhanced undulators performance, and will be significantly more compact, with a smaller footprint,  as a consequence of the lower energy and the high-gradient X-band structures. In addition, the whole infrastructure will also have a lower electrical power demand as well as lower construction and running costs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB032  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB107 The New 1-18 MHz Wideband RF System for the CERN PS Booster 3063
 
  • M.M. Paoluzzi, L. Arnaudon, V. Bretin, Y. Cuvet, J. Daricou, S. Energico, M. Haase, A.J. Jones, D. Landré, C. Rossi
    CERN, Geneva, Switzerland
  • C. Ohmori
    KEK/JAEA, Ibaraki-Ken, Japan
 
  The LHC Injector Upgrade (LIU) project at CERN prepares the injectors to meet the requirements of the High Luminosity LHC. For protons, it includes the new Linac4, PS Booster (PSB), PS and SPS. Among the major changes concerning the PSB, the extraction energy increase from 1.4 GeV to 2 GeV and the higher beam intensity, made possible by the Linac4 together with the new charge exchange injection system into the PSB (2·1013 protons) strongly affect the RF system requirements. To deal with this more demanding beam operation, a new RF system was designed. It is based on modern magnetic alloy loaded cavities driven by solid-state amplifiers. Its wideband frequency response (1 MHz to 18 MHz) covers all the required frequency schemes. This new RF system has been produced in 2017 and 2018; installation is planned during 2019, the first year of Long Shutdown 2 (LS2) and commissioning foreseen in 2020. Most of the production and testing was outsourced to industry; parts acceptance, cavities assembly and pre-testing was done in-house. A quality assurance plan was established to achieve the required high reliability. This paper describes the procurement, production and testing strategies and methodologies. It also reports the achieved results, system performances and relevant statistics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB107  
About • paper received ※ 26 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)