Author: Roblin, Y.
Paper Title Page
MOPRB090 Simulation Challenges for eRHIC Beam-Beam Study 785
 
  • Y. Luo, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
  • Y. Roblin, H. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The 2015 Nuclear Science Advisory Committee Long Rang Plan identified the need for an electron-ion collider (EIC) facility as a gluon microscope with capabilities beyond those of any existing accelerator complex. To reach the required high energy, high luminosity, and high polarization, the eRHIC design, based on the existing heavy ion and polarized proton collider RHIC, adopts a very small \beta-function at the interaction points, a high collision repetition rate, and a novel hadron cooling scheme. A full crossing angle of 22 mrad and crab cavities for both electron and proton rings are required. In this article, we will present the high priority R\&D items related to the beam-beam interaction studies for the current eRHIC design, the simulation challenges, and our plans and methods to address them. Recent progresses on this project are reported too.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB090  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXXPLM2 SRF Cavity Fault Classification Using Machine Learning at CEBAF 1167
 
  • A.D. Solopova, A. Carpenter, T. Powers, Y. Roblin, C. Tennant
    JLab, Newport News, Virginia, USA
  • K.M. Iftekharuddin, L. Vidyaratne
    ODU, Norfolk, Virginia, USA
 
  The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab is the first large high power CW recirculating electron accelerator which makes use of SRF accelerating structures configured in two antiparallel linacs. Each linac consists of twenty C20/C50 cryomodules each containing eight 5-cell cavities and five C100 upgrade cryomodules each containing eight 7-cell cavities. Accurately classifying the source of cavity faults is critical for improving accelerator performance. In addition to archived signals sampled at 10 Hz, a cavity fault triggers a waveform acquisition process where 16 waveform records sampled at 5 kHz are recorded for each of the 8 cavities in the effected cryomodule. The waveform record length is sufficiently long for transient microphonic effects to be observable. Significant time is required by a subject matter expert to analyze and identify the intra-cavity signatures of imminent faults. This paper describes a path forward that utilizes machine learning for automatic fault classification. Post-training identification of the physical origins of faults are discussed, as are potential machine-trained model-free implementations of trip avoidance procedures. These methods should provide new insights into cavity fault mechanisms and facilitate intelligent optimization of cryomodule performance  
slides icon Slides TUXXPLM2 [4.404 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUXXPLM2  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS073 Beam-Beam Effect: Crab Dynamics Calculation in JLEIC 3293
 
  • H. Huang, F. Lin, V.S. Morozov, Y. Roblin, A.V. Sy, Y. Zhang
    JLab, Newport News, Virginia, USA
  • I. Neththikumara, S. Sosa, B. Terzić
    ODU, Norfolk, Virginia, USA
 
  The electron and ion beams of a future Electron Ion Collider (EIC) must collide at an angle for detection, machine and engineering design reasons. To avoid associated luminosity reduction, a local crabbing scheme is used where each beam is crabbed before collision and de-crabbed after collision. The crab crossing scheme then provides a head-on collision for beams with a non-zero crossing angle. We develop a framework for accurate simulation of crabbing dynamics with beam-beam effects by combining symplectic particle tracking codes with a beam-beam model based on the Bassetti-Erskine analytic solution. We present simulation results using our implementation of such a framework where the beam dynamics around the ring is tracked using Elegant and the beam-beam kick is modeled in Python.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS073  
About • paper received ※ 16 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)