Author: Rethfeldt, C.
Paper Title Page
TUPGW014 Characterization and Implementation of the Cryogenic Permanent Magnet Undulator CPMU17 at Bessy II 1415
 
  • J. Bahrdt, W. Frentrup, S. Gottschlich, S. Grimmer, M. Huck, C. Kuhn, A. Meseck, C. Rethfeldt, M. Scheer, B. Schulz
    HZB, Berlin, Germany
  • E.C.M. Rial
    DLS, Oxfordshire, United Kingdom
 
  In fall 2018, the cryogenic undulator CPMU17 was installed in BESSY II. Before installation, the undulator was characterized with an in-vacuum Hallprobe bench and an in-vacuum moving wire. Both systems were developed at HZB. The commissioning of the device included the orbit and tune corrections, optimization of the injection, characterization of the heat dissipation, tuning the Landau cavities for a reduction of the heat dissipation in the taper sections (temperatures below 60°C) and testing of the machine protection system. The undulator is ready to deliver light for beamline commissioning. Spectral tuning on a high undulator harmonic (longitudinal taper and alignment of e-beam orbit and undulator axis) will be done as soon as the DCM is operational.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW014  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRB022 Triple Period Undulator 1728
 
  • A. Meseck, J. Bahrdt, W. Frentrup, M. Huck, C. Kuhn, C. Rethfeldt, M. Scheer
    HZB, Berlin, Germany
  • E.C.M. Rial
    DLS, Oxfordshire, United Kingdom
 
  Insertion devices are one of the key components of modern synchrotron radiation facilities. They allow for generation of radiation with superior properties enabling experiments in a variety of disciplines, such as chemistry, biology, crystallography and physics to name a few. For future cutting edge experiments in soft and tender x-rays users require high flux and variable Polarization over a wide photon energy range independent of other desired properties like variable pulse length, variable timing or Fourier transform limited pulses. In this paper, we propose a novel ID-structure, called Triple Period Undulator (TPU), which allow us to deliver a wide energy range from a few ten eV to a few keV at the same beamline with high flux and variable Polarization. The TPU are particularly interesting in context of BESSY III, the successor facility of BESSY II.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB022  
About • paper received ※ 15 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)