Paper | Title | Page |
---|---|---|
MOZZPLS2 | Positron Driven Muon Source for a Muon Collider: Recent Developments | 49 |
|
||
The design of a future multi-TeV muon collider needs new ideas to overcome the technological challenges related to muon production, cooling, accumulation and acceleration. The Low Emittance Muon Accelerator (LEMMA) concept *,** presents in this paper an upgraded layout of a positron driven muon source. The positron beam, stored in a ring with high energy acceptance and low emittance, is extracted and driven in a push-pull configuration to a multi-target system, to produce muon pairs at threshold on the target’s electrons. This solution alleviates the issues related to the power deposited and the integrated Peak Energy Density Deposition on the targets. Muons produced in the multi-target system will then be accumulated in many parallel rings before acceleration and injection in the collider. A special multi-target line lattice has been designed to cope with the focusing of both the positron and muon beams. Studies on the number, material and thickness of the targets have been carried out. A general layout of the overall scheme and a description is presented, as well as plans for future R&D.
* M. Antonelli, P. Raimondi, INFN-13-22/LNF, 2013 ** M. Boscolo, M. Antonelli, O.R. Blanco-Garcia, S. Guiducci, S. Liuzzo, P. Raimondi, F. Collamati, Phys. Rev. Accel. Beams, vol. 21, p. 061005, 2018 |
||
![]() |
Slides MOZZPLS2 [4.360 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOZZPLS2 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPGW008 | Transparent Injection for ESRF-EBS | 78 |
|
||
The commissioning of the ESRF-EBS storage ring will start in December 2019 ultimately providing a horizontal emittance of 130 pm, 30 times lower than the present one. Due to the reduced beam lifetime top-up operation will be required for all operating modes. Transparent injection, i.e. with negligible perturbations on the stored beam, is necessary to allow continuous data acquisition for beam lines experiments. Several options have been considered at ESRF to reduce these perturbations down to a fraction of the rms beam size: i) new kickers power supplies with slow ramping time to facilitate active compensation are under development and will be implemented in the coming years ii) in parallel, long term solutions using non-linear kickers and longitudinal on-axis injection have been investigated. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW008 | |
About • | paper received ※ 13 May 2019 paper accepted ※ 18 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPRB003 | Multi-Target Lattice for Muon Production From e+ Beam Annihilation on Target | 578 |
|
||
The Low Emittance Muon Accelerator~(LEMMA) aims at producing small emittance muons from positron annihilation with electrons in a target. Given the low cross section of the production process, a large number of positrons on the target are required, exposing it to high power deposition and the beam to large degradation because of multiple scattering and bremstrahlung. A multi-target IP, and multi-IP line has been studied to reduce the power deposition per target and the degradation of the positron beam while preserving the number of muon pairs produced. The lattice copes with the focusing and transport of three beams at two different energies, the positron beam at 45 GeV, and µ++ and µ− beams at 22.5~GeV. Studies on the beam dynamics, number of targets, material and thickness of the targets are reported in this paper. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB003 | |
About • | paper received ※ 13 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPGW009 | THE ESRF FROM 1988 TO 2018, 30 YEARS OF INNOVATION AND OPERATION | 1400 |
|
||
In 1988, eleven European countries joined forces to build the European Synchrotron Facility in Grenoble [France]. The ESRF was the first third-generation light source worldwide. After 30 years of innovation and user operation, the present storage ring was shut down to leave room for a new and brighter source. This paper describes the evolution of the facility from its origin to the Ex-tremely Bright Source (EBS). Firstly, the operational aspects including reliability and beam modes are consid-ered. This is followed by the presentation of the progress of lattice and the implementation of top-up. Finally, the development of the radio frequency and vacuum systems are discussed. To conclude, the lessons learned from 30 years operation are summarized, especially in view of EBS. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW009 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |