Author: Rahman, O.H.
Paper Title Page
TUPTS102 New Activation Techniques for Higher Charge Lifetime from GaAs Photocathodes 2157
 
  • O.H. Rahman, M. Gaowei, W. Liu, E. Wang
    BNL, Upton, Long Island, New York, USA
  • J.P. Biswas
    Stony Brook University, Stony Brook, USA
 
  GaAs is the choice of photocathode material for polarized electron sources. The well established method of activating GaAs for beam extraction is to use Cs and Oxygen to create a ’Negative Electron Affinity’(NEA) layer. However, this layer is highly sensitive to vacuum and gets damaged due to ion back bombardment in DC guns. In this work, we explore activation methods that used Tellurium in conjunction with the usual Cs and Oxygen. We report our method to activate GaAs and show charge lifetime results for our activation method. Our results show that the use of Te could potentially help with longer charge lifetimes from GaAs cathodes in DC guns.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS102  
About • paper received ※ 14 May 2019       paper accepted ※ 19 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS103 The Progress of High Current High Bunch Charge Polarized Electron HVDC Gun 2160
 
  • E. Wang, I. Ben-Zvi, R.F. Lambiase, W. Liu, O.H. Rahman, J. Skaritka, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
  • I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The high current and high bunch charge polarized electron source is essential for cost reduction of eRHIC. It aims to deliver electron beam with 10 mA average current and 5.3 nC bunch charge. We analyzed the mechanism of cathode degradation and proposed using a large strain superlattice GaAs photocathode in a high voltage DC gun to increase the charge lifetime above kilo Coulomb. The gun has been designed and fabricated and expected to start commissioning by the mid of this year. In this paper, we will present the modeling of ion back bombardment and cathode degrading. We proposed an anode offset scheme to increase cathode lifetime. Also, we will describe the details of gun design and the strategies to demonstrate high current high charge polarized electron beam from this source.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS103  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)