Paper | Title | Page |
---|---|---|
MOPTS038 | BEAM DYNAMICS OF HIGH CHROMATICITY LATTICE FOR IRANIAN LIGHT SOURCE FACILITY (ILSF) STORAGE RING | 943 |
SUSPFO032 | use link to see paper's listing under its alternate paper code | |
|
||
One of the limiting factors of electron beam lifetime in low emittance storage rings is Head-Tail (HT) insta-bility. Low emittance storage rings typically have a large negative natural chromaticity due to the strong quadru-poles. Above transition large negative natural chroma-ticity leads to large Head-Tail instability which limit the beam lifetime. Since the threshold current of HT insta-bility is directly related to linear chromaticity, increasing the linear chromaticity to slightly positive value is a solution to prevent HT instability. In this paper we in-creased the chromaticity of Iranian Light Source Facility (ILSF) to (+4, +4) and we will investigate the beam dy-namics of ILSF 3GeV storage ring in high chromaticity. For reaching this aim we have used two families of sex-tupoles for chromaticity correction and then optimized them to maximize the dynamic aperture and Touschek lifetime. The beam dynamics of high chromaticity lattice is presented in this paper.
Foroughi.farangis@gmail.com |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS038 | |
About • | paper received ※ 29 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPTS040 | Beta Beating and Coupling Correction of the ILSF Storage Ring | 946 |
|
||
The Iranian Light Source Facility (ILSF) is a 3 GeV synchrotron radiation facility, which is in the design stage. Inevitable errors like imperfection of magnetic field and misalignment of magnets will introduce various destructive effects on the performance of the machine. The possibility of correcting the errors should be thoroughly examined before settling the design. In this paper, the correction process of beta beating and coupling with LOCO is described. The rms beta beating in horizontal and vertical planes after correction are reduced to 1% and 2% respectively. The average coupling ratio of lattice for 100 random error distribution is corrected to 0.2%. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS040 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPGW068 | New Source for Bending Magnet Beam Lines at Ultra-Low-Emittance Ring | 1557 |
|
||
The Iranian Light Source Facility (ILSF) is a 3 GeV 3rd synchrotron radiation laboratory in the basic design phase. The Storage Ring (SR) is based on a five-bend achromat (5BA) lattice providing low horizontal emittance of 0.27 nm.rad. Due to the ILSF storage ring, straight section limits the use of the short length wigglers for hard X-ray generation is recommended. Which are removable in the lattice. In this article, the new design of the 3-pole wiggler is investigated and the main parameters of this 3-pole wiggler, by considering the ILSF storage ring characteristics, is modified. Also, the effect of the new 3-pole wiggler on the beam dynamics is investigated and the advantages of the new design are presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW068 | |
About • | paper received ※ 28 April 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPGW069 | Insertion Devices for the Day-One Beamlines of ILSF | 1561 |
|
||
The Iranian Light Source Facility (ILSF) is a new 3 GeV synchrotron radiation laboratory with ultralow emittance of 270 pm-rad, which is in the design stage. Seven beamlines are planned to start operation with several different insertion devices installed in the storage ring either from "day one" or within the first year of operation. The most operational undulator for polarized radiations -Apple II- has been deliberated for the solid state electron spectroscopy, the Spectromicroscopy and the ARPES beamlines. The hybrid wigglers for the XPD and the EXAFS beamlines and in-vacuum undulators for Macromolecular Crystallography and SCD beamlines have been chosen too. The emission of these IDs covers a wide spectral range extending from hard X-rays to UV. Pre-design of the IDs were already done in ILSF. The main parameters of magnetic design as well as radiation parameters for the first phase of ILSF insertion devices have been described in this paper. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW069 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTS100 | The ESR Closed Orbit Calculation and Simulation | 3349 |
SUSPFO031 | use link to see paper's listing under its alternate paper code | |
|
||
The commissioning of the ESR with a new control system based on the LSA (LHC System Architecture) has started recently. This new control system is under development and considers all aspects of the expected functionality to operate the GSI/FAIR accelerators and incorporates the present GSI controls infrastructure*. Two years ago, the old control system which was based on outdated computers and operating system, was discontinued. So, both the heavy ion synchrotron SIS-18 and the Experimental Storage Ring (ESR) operation from now on have to be performed with the new FAIR control system. In order to introduce an improved model to the control system change, new calculations and simulations for SIS and ESR are necessary. In this paper we summarize the results of closed orbit calculations for the ESR which are done with three different codes, namely: ELEGANT*, MAD-X and MIRKO. Also, because the results of ELEGANT and MAD-X in this issue are similar to each other, we present ELEGANT results in the report.
* R. Bär, DEVELOPMENT OF A NEW CONTROL SYSTEM FOR THE FAIR ACCELERATOR COMPLEX AT GSI. Kobe. ** Borland, M., elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS100 | |
About • | paper received ※ 29 April 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPTS017 | ILSF Ultralow Emittance Storage Ring Magnets | 4142 |
|
||
Iranian Light Source Facility (ILSF) is a 3 GeV synchro-tron which is in the basic design phase. The ILSF storage ring (SR) is based on a Five-Bend Achromat lattice providing a low horizontal beam emittance of 270 pm-rad. The ILSF storage ring consists of 100 combined di-pole magnets of 2 types, 240 quadrupoles in 5 families and also 320 sextupoles in 6 families. In this paper, we present some design features of the SR magnets and dis-cuss the detailed physical design of these electromagnets including electrical and cooling calculations. Using POISSON and OPERA codes [1,2], pole and yoke geome-try was developed for each magnet | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS017 | |
About • | paper received ※ 30 April 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPTS018 | ILSF Booster Magnets for the New Low Emittance Lattice | 4145 |
|
||
Iranian light source facility is a new 3rd generation light source with a booster which is supposed to work at 150 keV injection energy and guide the electrons to a 3GeV ring. It consists of 50 combined dipole magnets in one type, 50 quadrupoles and 15 sextupoles in one family. Using POISSON and OPERA3D codes[1,2], pole and yoke geometry was designed for each magnet and also cooling and electrical calculations have been done. ILSF has attempted to mechanical design and build prototype magnets which are ongoing at this stage too. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS018 | |
About • | paper received ※ 30 April 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |