Paper | Title | Page |
---|---|---|
MOPRB081 | Electron Beam’s Closed Orbit in the Crab Crossing Scheme of Future Electron-Ion Colliders | 762 |
|
||
In crab-crossing collision geometry the closed orbit of the electron beam will be altered by the beam-beam interaction and the tilted head and tail of the ion beam. We will present the linear model to determine the closed orbit and compare with the simulation. Also, the relation of the closed orbit and the synchro-betatron resonance will be presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB081 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPRB082 | Scaling Properties of the Synchro-Beta Resonance in Crab Crossing Scheme of Future Electron Ion Collider | 766 |
|
||
The synchro - beta resonance due to the beam-beam interaction was predicted by the strong-strong simulation in the future electron-ion collider designs. In this paper, we study the scaling properties of the degradation rate of this unwanted resonance. These studies motivated the possible countermeasures of the luminosity degradation associated with the resonance. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB082 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPRB090 | Simulation Challenges for eRHIC Beam-Beam Study | 785 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The 2015 Nuclear Science Advisory Committee Long Rang Plan identified the need for an electron-ion collider (EIC) facility as a gluon microscope with capabilities beyond those of any existing accelerator complex. To reach the required high energy, high luminosity, and high polarization, the eRHIC design, based on the existing heavy ion and polarized proton collider RHIC, adopts a very small \beta-function at the interaction points, a high collision repetition rate, and a novel hadron cooling scheme. A full crossing angle of 22 mrad and crab cavities for both electron and proton rings are required. In this article, we will present the high priority R\&D items related to the beam-beam interaction studies for the current eRHIC design, the simulation challenges, and our plans and methods to address them. Recent progresses on this project are reported too. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB090 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPRB091 | Combined Strong-Strong and Weak-Strong Beam-Beam Simulations for Crabbed Collision in eRHIC | 788 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. In the eRHIC, to compensate the geometric luminosity loss, local crab cavities on both sides of the interaction points are to adopted. The previous strong-strong beam-beam simulations showed that the luminosity degradation depends on the crab cavity frequency, proton synchrotron tune, proton bunch length and so on. In this article, we apply a combined strong-strong and weak-strong beam-beam simulation to investigate the incoherent and coherent beam motions with crabbed collison, and to calculate more realistic beam emittance growth rates and luminosity degradation rate. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB091 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPRB103 | A Phase Shifter for Multi-Pass Recirculating Proton LINAC | 802 |
|
||
Funding: This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and used computer resources at the National Energy Research Scientific Computing Center. The multi-pass recirculating proton linac can significantly improve the usage efficiency of RF superconducting cavities by passing the proton beam through the same cavity multiple times. However, in order to achieve the multiple acceleration, synchronous conditions in phase have to be satisfied. In this paper, we propose a fixed field superconducting magnet system as a phase shifter to meet the synchronous conditions. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB103 | |
About • | paper received ※ 09 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPRB097 | Recent Progress on the Design of Normal Conducting APEX-II VHF CW Electron Gun | 1891 |
|
||
Funding: Director of Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 We report recent progress on the design of a normal conducting CW electron gun, APEX-II (Advanced Photo-injector EXperiment-II) at Lawrence Berkeley National Laboratory. APEX-II is an upgrade of the successful APEX gun and the LCLS-II (Linac Coherent Light Source-II) injector, aiming at applications for Free electron laser (FEL) such as LCLS-II High Energy upgrade, UED (Ultrafast Electron Diffraction) and UEM (Ultrafast Electron Microscopy). The APEX-II adopted a two-cell cavity design with resonant frequency of 162.5 MHz. The APEX-II gun is targeting to achieve exceeding 30 MV/m of launch gradient at the cathode and output energy above 1.5 MeV with transverse emittance of 0.1 um at 100 pC. Advanced MOGA optimization technique has been used for both the RF cavity design and extensive beam dynamics studies using APEX-like and LCLS-II like injector layout. Detailed RF designs, beam dynamics studies, preliminary engineering design and FEA analysis will be presented, with cavity features that were demonstrated to be crucial in the operation of the APEX gun. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB097 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTS079 | Analysis of Particle Noise in a Gridless Spectral Poisson Solver for Symplectic Multiparticle Tracking | 3304 |
|
||
Funding: This work was was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Gridless symplectic methods for self-consistent modeling of space charge in intense beams possess several advantages over traditional momentum-conserving particle-in-cell methods, including the absence of numerical grid heating and the presence of an underlying multi-particle Hamiltonian. Despite these advantages, there remains evidence of irreversible emittance growth due to numerical particle noise. For a class of such algorithms, a first-principles kinetic model of the numerical particle noise is obtained and applied to gain insight into noise-induced entropy growth and thermal relaxation. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS079 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTS088 | Integration of Cavity Design and Beam Dynamics Simulation Using the Parallel IMPACT and the ACE3P Codes | 3317 |
|
||
Funding: This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and DE-AC02-76SF00515, The 3D parallel code suite IMPACT has been extensively used in the beam dynamics study of photoinjectors while the 3D parallel code ACE3P has been extensively used in the RF cavity design. In this paper, we propose integrating the ACE3P cavity design and the IMPACT beam dynamics simulation into a single work flow. Such a workflow enables efficient simulation of 3D effects(e.g. RF coupler) on high performance computers. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS088 | |
About • | paper received ※ 07 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTS089 | Microbunching Instability Mitigation via Multi-Stage Cancellation | 3321 |
|
||
Funding: This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and used computer resources at the National Energy Research Scientific Computing Center. The microbunching instability driven by beam collective effects in the linear accelerator of a free electron laser (FEL) facility can significantly degrade electron beam quality and FEL performance. Understanding and control of the instability is a priority for the design of modern high-brightness electron accelerators. In this paper, we study an instability cancellation phenomenon due to 180 degree phase slippage of the current modulations between different amplification stages. A case study of using a nonisochronous dogleg section in a double compression scheme to cancel the current modulation is illustrated. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS089 | |
About • | paper received ※ 07 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTS090 | Suppression of Microbunching Instability Through Dispersive Lattice | 3325 |
|
||
Funding: This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and used computer resources at the National Energy Research Scientific Computing Center. The microbunching instability from the initial small modulation such as shot-noise can be amplified by longitudinal space-charge force and causes significant electron beam quality degradation at the exit of accelerator for the next generation x-ray free electron laser. In the paper, we present analytical and numerical simulation studies of a novel method using dispersion leakage from some quadrupoles inside a chicane. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS090 | |
About • | paper received ※ 26 April 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTS093 | Emittance Preservation for LCLS-II-HE Project | 3333 |
|
||
Funding: The work was supported by the US Department of Energy (DOE) under contract DE-AC02-76SF00515 and the US DOE Office of Science Early Career Research Program grant FWP-2013-SLAC-100164. A small transverse slice emittance at the undulator entrance is essential for high performance of the free electron laser. To achieve this, preservation of the phase space density of the electron bunch during acceleration and compression is absolutely necessary. The LCLS-II-HE is designed to transport a 100 pC bunch with an emittance of ~0.3 mm-mrad with minimal emittance dilution. However, in simulations starting from a normalized emittance on the order of 0.1 mm-mrad, the emittance growth is significant. In this paper, the sources of emittance growth are studied along the accelerator, in particular, around the laser-heater, the two bunch compressors. We have investigated mechanisms of emittance growth such as space charge, coherent synchrotron radiation, chromatic aberration, and spurious dispersion. Due to the extremely small emittance from the injector, 3-D space charge effect is important to determine the space charge dominated region and emittance dominated region. With this understanding, emittance preservation schemes are proposed. Studies are carried out with IMPACT simulation code, as well as ASTRA and ELEGANT. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS093 | |
About • | paper received ※ 23 May 2019 paper accepted ※ 24 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |