Author: Pioli, S.
Paper Title Page
WEPGW025 High Level Software for Beam 6D Phase Space Characterization 2522
SUSPFO037   use link to see paper's listing under its alternate paper code  
 
  • V. Martinelli, D. Alesini, M. Ferrario, A. Giribono, S. Pioli, C. Vaccarezza, A. Variola
    INFN/LNF, Frascati, Italy
  • A. Bacci
    INFN-Milano, Milano, Italy
 
  Operation of modern particle accelerators require high qualitity beams and conseguently sensitive diagnostic system in order to monitories and characterize the beam during the acceleration and transport. A turn-key high level software BOLINA (Beam Orbit for Linear Accelerators) has been developed to fully characterise the 6D beam phase space in order to help operator during commissioning with an easily scalable suite for any high brightness LINAC. In this work will be presented the diagnostic toolkit is presented as designed for the ELI-NP Gamma Beam System (GBS) a radiation source based on the Compton back scattering effect able to provide tunable gamma rays in the 0.2-20 MeV range with narrow bandwidth (0.3% and a high spectral density (104 photons/sec/eV) by the Compton backscattering effect. BOLINA suite is design to be machine independent, thanks to the file exchanges with the EPICS based control system. Simulation of raw data of the ELI-NP-GBS accelerator has been used to test the capabilities of the diagnostic toolkit.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW025  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB030 Novel FPGA-based Instrumentation for Personnel Safety Systems in Particle Accelerator Facility 3872
 
  • S. Pioli, M. Belli, M.M. Beretta, B. Buonomo, P. Ciambrone, D.G.C. Di Giulio, O. Frasciello, A. Variola
    INFN/LNF, Frascati, Italy
  • P. Valente
    INFN-Roma, Roma, Italy
 
  Personnel safety system for particle accelerator facility involves different devices to monitor gates, shielding doors, dosimetry stations, search and emergency buttons. In order to achieve the proper reliability, fail-safe and fail-proof capabilities, these systems are developed compliant with safety standards (like the IEC-61508 on ’Functional Safety’, ANSI N43.1 ’Radiation Safety for the design and operation of Particle Accelerator’ and NCRP report 88) involving stable technologies like electro-mechnaical relays and, recently, PLC. As part of the Singularity project at Frascati National Laboratories of INFN, this work will report benchmark of a new FPGA-based system from the design to the validation phase of the prototype currently operating as personnel safety system at the Beam Test Facility (BTF) of Dafne facility. This novel instrument is capable of: devices monitoring in real-time at 1 kHz, dual modular redundancy, fail-safe and fail-proof, multi-node distributed solution on optical link, radiation damage resistance and compliant with IEC-61508, ANSI N43.1 and NCRP report 88. The aim of this FPGA-based system is to illustrate the feasibility of FPGA technology in the field of personnel safety for particle accelerator in order to take advantage of a fully digital system integrated with facility control system, evaluate the related reliability and availability and realize a standard, scalable and flexible hardware solution also for other fields with similar requirements like machine protection systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB030  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)