Author: Perillo-Marcone, A.
Paper Title Page
WEPMP040 Machine Protection Aspects of High-Voltage Flashovers of the LHC Beam Dump Dilution Kickers 2418
 
  • C. Wiesner, W. Bartmann, C. Bracco, M. Calviani, E. Carlier, L. Ducimetière, M.I. Frankl, M.A. Fraser, S.S. Gilardoni, B. Goddard, V. Gomes Namora, T. Kramer, A. Lechner, N. Magnin, M. Meddahi, A. Perillo-Marcone, T. Polzin, L.C. Richtmann, V. Rizzoglio, V. Senaj, J.A.F. Somoza, D. Wollmann
    CERN, Meyrin, Switzerland
 
  The LHC Beam Dump System is required to safely dispose of the energy of the stored beam. In order to reduce the energy density deposited in the beam dump, a dedicated dilution system is installed. On July 14, 2018, during a regular beam dump at 6.5 TeV beam energy, a high-voltage flashover of two vertical dilution kickers was observed, leading to a voltage breakdown and reduced dilution in the vertical plane. It was the first incident of this type since the start of LHC beam operation. In this paper, the flashover event is described and the implications analysed. Circuit simulations of the current in the magnet coil as well as simulations of the resulting beam sweep pattern are presented and compared with the measurements. The criticality of the event is assessed and implications for future failure scenarios are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP040  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS052 Electron Cloud Build-Up Simulations in the Two-Beam Common Chamber of the HL-LHC TDIS With Nonuniform Surface Properties 3236
 
  • G. Skripka, C. Bracco, G. Iadarola, A. Perillo-Marcone
    CERN, Meyrin, Switzerland
 
  The segmented injection protection absorber (TDIS) foreseen for the High-Luminosity Large Hadron Collider (HL-LHC) project is designed to protect the machine in case of injection kicker malfunctioning. Since the current LHC injection protection absorber has suffered from vacuum issues possibly induced by electron multipacting, numerical studies were done to estimate the electron flux expected on the internal surfaces of the TDIS. This device will consist of three pairs of movable absorbing blocks above and below one beam and a beam screen surrounding the second circulating beam. The build-up of electron cloud in the TDIS was simulated accounting for the presence of two counter-rotating beams, for the configuration of the jaws and for the different materials used for the different surfaces in the device. The simulation studies have also investigated the possibility of coating the most critical surfaces with amorphous carbon in order to mitigate the multipacting.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS052  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)