Paper | Title | Page |
---|---|---|
WEPRB076 | Analysis of Higher Order Multipoles of the 952.6 Mhz RF-Dipole Crabbing Cavity for the Jefferson Lab Electron-Ion Collider | 2996 |
|
||
The crabbing system is a key feature in the Jefferson Lab Electron-Ion Collider (JLEIC) required to increase the luminosity of the colliding bunches. A local crabbing system will be installed with superconducting rf-dipole crabbing cavities operating at 952.6 MHz. The field non-uniformity across the beam aperture in the crabbing cavities produces higher order multipole components, similar to that which are present in magnets. Knowledge of higher order mode multipole field effects is important for accurate beam dynamics study for the crabbing system. In this paper, we quantify the multipole components and analyse their effects on the beam dynamics. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB076 | |
About • | paper received ※ 20 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPRB093 | Design of a Proof-of-principle Crabbing Cavity for the Jefferson Lab Electron-ion Collider | 3027 |
|
||
The Jefferson Lab design for an electron-ion collider (JLEIC) requires crabbing of the electron and ion beams in order to achieve the design luminosity. A number of options for the crabbing cavities have been explored, and the one which has been selected for the proof-of-principle is a 952 MHz, 2-cell rf-dipole (RFD) cavity. This paper summarizes the electromagnetic design of the cavity and its HOM characteristics. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB093 | |
About • | paper received ※ 22 May 2019 paper accepted ※ 24 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPRB098 | Cryogenic RF Performance of Double-Quarter Wave Cavities Equipped with HOM Filters | 3043 |
|
||
Funding: Work supported by US DOE through BSA LLC under contracts No. DE-AC02-98CH10886, No. DE-SC0012704, and the US LHC Accelerator Research Program (LARP) and by the EU HL-LHC Project. Crab cavities are one of the several components included in the luminosity upgrade of the Large Hadron Collider (HL-LHC). The cavities have to provide a nominal deflecting kick of 3.4 MV per cavity while the cryogenic load per cavity stays below 5 W. Cold RF tests confirmed the required performances in bare cavities, with several cavities exceeding the required voltage by more than 50%. However, the first tests of a Double-Quarter Wave (DQW) cavity with one out of three HOM filters did not reach the required voltage. The present paper describes the studies and tests conducted on a DQW cavity with HOM filter to understand the limiting factor. The recipe to meet the performance specification and exceed the voltage requirement by more than 35% is discussed. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB098 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |