Paper | Title | Page |
---|---|---|
MOZPLS2 | Ion Collider Precision Measurements With Different Species | 28 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC, under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Precedent to electron cooling commissioning and collisions of Gold at various energies at RHIC in 2018, the STAR experiment desired an exploration of the chiral magnetic effect in the quark gluon plasma (QGP) with an isobar run, utilizing Ruthenium and Zirconium. Colliding Zr-96 with Zr-96 and Ru-96 with Ru-96 create the same QGP but in a different magnetic field due to the different charges of the Zr (Z=40) and Ru (Z=44) ions. Since the charge difference is only 10%, the experimental program requires exacting store conditions for both ions. These systematic error concerns presented new challenges for the Collider, including frequent reconfiguration of the Collider for the different ion species, and maintaining level amounts of instantaneous and integrated luminosity between two species. Moreover, making beams of Zr-96 and Ru-96 is challenging since the natural abundances of these isotopes are low. Creating viable enriched source material for Zr-96 required assistance processing from RIKEN, while Ru-96 was provided by a new enrichment facility under commissioning at Oak Ridge National Laboratory. |
||
![]() |
Slides MOZPLS2 [4.758 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOZPLS2 | |
About • | paper received ※ 11 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPRB072 | eRHIC in Electron-Ion Operation | 738 |
|
||
Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy. The design effort for the electron-ion collider eRHIC has concentrated on electron-proton collisions at the highest luminosities over the widest possible energy range. The present design also provides for electron-nucleon peak luminosities of up to 4.7·1033 cm-2s−1 with strong hadron cooling, and up to 1.7·1033 cm-2s−1 with stochastic cooling. Here we discuss the performance limitations and design choices for electron-ion collisions that are different from the electron-proton collisions. These include the ion bunch preparation in the injector chain, acceleration and intrabeam scattering in the hadron ring, path length adjustment and synchronization with the electron ring, stochastic cooling upgrades, machine protection upgrades, and operation with polarized electron beams colliding with either unpolarized ion beams or polarized He-3. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB072 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMP048 | Development of Spin Rotator and an Absolute Polarimeter for Polarized He-3 at BNL | 2440 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. EBIS Preinjector will provide longitudinally polarized 3He++ ions with about 80% polarization and 5.1011 particles per bunch at 6 MeV, which must be rotated to vertical direction before it ions are injected into the Booster. The 3He++ longitudinal polarization is first rotated to the transverse direction by the 21.5° bending magnet. Then the solenoid spin-rotator rotates the spin to the vertical direction. The spin-rotator will be a pulsed solenoid with a reversible field to enable spin flips. The vertically polarized beam will be returned back to the straight HEBT line by the system of three dipole magnets after the spin rotator solenoid. The low-energy polarimeter can be installed in the straight beam line section after the second dipole magnet. To measure transverse (vertical) polarization of the 3He beam at 5-6 MeV, the spin correlated asymmetry of 3He scattering on a 4He gas target (~5 Torr) will be measured with left/right symmetric strip detectors. Paper will present status of the project. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP048 | |
About • | paper received ※ 19 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |