Author: Oishi, M.
Paper Title Page
TUPMP018 Feasibility Tests of a Vacuum System for SPring-8-II 1272
 
  • K. Tamura, T. Bizen, M. Masaki, H. Ohkuma, M. Oishi, M. Shoji, S. Takahashi, Y. Taniuchi
    JASRI, Hyogo, Japan
  • T. Bizen, M. Oishi, S. Takahashi
    RIKEN SPring-8 Center, Hyogo, Japan
 
  For SPring-8-II, the major upgrade of SPring-8, a test half-cell including permanent/electro magnets and a vacuum system was constructed, and hardware feasibility tests have been performed since 2017. Features of the SPring-8-II vacuum system are 1) introduction of the concept of a stainless steel 12 m-long integral chamber (LIC) with a welded structure, and 2) adoption of ex-situ baking of the chamber. The 12 m LIC with a narrow aperture, flangeless structure and a minimum number of bellows was designed so that the vacuum system could be installed without interference with the magnets of a narrow bore diameter aligned on girders with a severe packing factor. For replacement of the existing system with a new one in a short black-out period, the 12 m LIC is planned to be moved into the accelerator tunnel with keeping ultra-high vacuum (UHV) by closing thin gate valves at both ends, after evacuation to UHV by ex-situ baking and NEG activation. This presentation will overview the vacuum system, mainly the 12 m LIC, developed for the test half-cell, and describe the vacuum performance and the result of the assembly test conducted with the permanent/electro magnets.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP018  
About • paper received ※ 15 May 2019       paper accepted ※ 17 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP009 Renovation of Off-Axis Beam Injection Scheme for Next-Generation Photon Sources 2318
 
  • S. Takano, K. Fukami, C. Kondo, M. Masaki, M. Oishi, M. Shoji, K. Tamura, T. Taniuchi, T. Watanabe, K. Yanagida
    JASRI, Hyogo, Japan
  • H. Akikawa, K. Sato
    Nihon Koshuha Co. Ltd, Yokohama, Japan
  • K. Fukami, T. Hara, T. Inagaki, C. Kondo, M. Oishi, S. Takano, H. Tanaka, T. Watanabe
    RIKEN SPring-8 Center, Hyogo, Japan
  • K. Hamato, J. Kataoka, K. Kusano, K. Ogata, Y. Saito
    TOKIN, Sendai, Miyagi, Japan
 
  Funding: Work supported by Ministry of education, culture, sports, science and technology JAPAN (MEXT).
Photon sources are looking for performance upgrades by pursuing higher photon brilliance and coherence these years. The trend is pushing the lattice design to lower the beam emittance, which naturally results in the narrower dynamic aperture. One bottleneck in the upgrades is a beam injection system capable of accumulating required beam intensity and keeping top-up operations with such narrow apertures. Beam injection with a nonlinear kicker and transverse/longitudinal on-axis injections are now in the limelight. However, these techniques still need time to be put into practical use. We take an alternative approach for the SPring-8 upgrade, SPring-8-II, renovating the off-axis beam injection scheme to address the following requirements for the coming diffraction-limited storage rings (DLSRs): minimizing of both injection beam amplitude and perturbation to stored beam, and topping-up functionality. This presentation will overview the renewed off-axis beam injection scheme and report the development status of the following three key components: 1) permanent magnet based DC septum magnet, 2) in-vacuum pulse septum magnet, and 3) twin kickers driven by a single solid state pulser.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP009  
About • paper received ※ 10 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)