Author: Oddo, P.
Paper Title Page
TUPTS108 Numerical Simulations of RHIC FY17 Spin Flipper Experiments 2174
 
  • P. Adams, H. Huang, J. Kewisch, C. Liu, F. Méot, P. Oddo, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Spin flipper experiments during RHIC Run 17 have demonstrated the 97% effectiveness of polarization sign reversal during stores. Zgoubi numerical simulations were setup to reproduce the experimental conditions. A very good agreement between the experimental measurements and simulation results was achieved at 23.8GeV, thus the simulations are being used to help optimize the various Spin Flipper parameters. The ultimate goal for these simulations is to serve as guidance towards a perfect flip at high energies to allow a routine Spin Flipper use during physics runs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS108  
About • paper received ※ 13 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS109 Status of AC Dipole Project at Rhic Injectors for Polarized 3He, Update 2177
 
  • K. Hock, C.W. Dawson, H. Huang, J.P. Jamilkowski, F. Méot, P. Oddo, M.C. Paniccia, Y. Tan, N. Tsoupas, J.E. Tuozzolo, K. Zeno
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
An ac dipole will be used for the efficient transport of polarized 3He in the AGS Booster as it is accelerated to |Gγ|=10.5. The ac dipole introduces a coherent vertical beam oscillation which allows preservation of polarization through the two intrinsic resonances Gγ=12-νy and Gγ=6+νy resonances, by full spin flipping. The AGS Booster ac dipole will be tested with protons crossing the Gγ=0+νy intrinsic resonance, which has ac dipole requirements similar to polarized 3He crossing the Gγ=12-νy resonance, providing a convenient proof of principle. This paper gives a status of the project.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS109  
About • paper received ※ 13 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS110 Scanning the AC Dipole Resonance Proximity Parameter in the AGS Booster 2179
 
  • K. Hock, H. Huang, F. Méot, P. Oddo, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
An ac dipole system is installed in the AGS Booster in view of acceleration of polarized helion for RHIC and the eRHIC EIC. The amplitude of the vertical coherent oscillations induced by the ac dipole depends greatly on the resonance proximity parameter, δm, which is the distance between resonance tune and driving tune. Due to the non-zero momentum spread, particles with different momenta will have different value of δm. The rapid acceleration rate of the booster would cause δm to sweep, the amount of which would depend on the energy and the duration of the ac dipole cycle. These effects are simulated using zgoubi, which set a range of δm values suitable for both high spin flip efficiency and minimizing emittance growth, and the results of the simulations are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS110  
About • paper received ※ 12 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)