Author: Nugent, J.C.
Paper Title Page
MOPRB012 RECENT RESULTS FROM MICE ON MULTIPLE COULOMB SCATTERING AND ENERGY LOSS 598
 
  • C.G. Whyte
    USTRAT/SUPA, Glasgow, United Kingdom
  • J.C. Nugent
    University of Glasgow, Glasgow, United Kingdom
 
  Funding: STFC, NSF, DOE, INFN, CHIPP and more
Multiple Coulomb scattering and energy loss are well known phenomena experienced by charged particles as they traverse a material. However, from recent measurements by the MuScat collaboration, it is known that the simulation code (GEANT4) available at the time overestimated the scattering of muons in low Z materials. Updates to GEANT4 have brought the simulations in line with the MuScat data and these new models can be validated over a larger range of momentum, 170-250 MeV/c, with MICE data. This is of particular interest to the Muon Ionization Cooling Experiment (MICE) collaboration which has the goal of measuring the reduction of the emittance of a muon beam induced by energy loss in low Z absorbers. MICE took data without magnetic field suitable for multiple scattering measurements in the spring of 2016 using a lithium hydride absorber and in the fall of 2017 using a liquid hydrogen absorber. The measurement in lithium hydride is reported here along with the preliminary measurements in liquid hydrogen. In the fall of 2016 MICE took data with magnetic fields on and measured the energy loss of muons in a lithium hydride absorber. These data are all compared with the Bethe-Bloch formula and with the predictions of various models, including the default GEANT4 model.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB012  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)