Author: Ning, C.J.
Paper Title Page
WEPGW046 Key Technologies for Remote Detection of CSNS Radiation Environment 2584
 
  • L. Kang, R.H. Liu, X.J. Nie, A.X. Wang, G.Y. Wang, D.H. Zhu
    IHEP, Beijing, People’s Republic of China
  • J.X. Chen, H.Y. He, L. Liu, C.J. Ning, J.B. Yu, Y.J. Yu, J.S. Zhang
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  Funding: Work supported by National Nature Science Foundation of China (11375217)
China Spallation Neutron Source (CSNS) has been continuously operating in September 2018. As the operating time increases the radiation dose will also increase, some equipment maintenance and testing must take special tools and equipment. This article mainly introduced the studies on radiation environment of several detection technologies, such as: remote vacuum leak detection methods and equipment, strong magnetic field environment vibration measuring technology, using Qr code tracing machine walking vehicle inspection system and remote image vision measurement technology, etc., these advanced technology also has a guiding significance to other related fields.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW046  
About • paper received ※ 23 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW039 Moderation of Positive Muons by Helium Gas 3667
 
  • Y. Li, Y. Bao, R. Fan, X. Li, X. Tong
    IHEP, Beijing, People’s Republic of China
  • C.J. Ning, P.C. Wang
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  Funding: This work is supported by CAS, National Natural Science Foundation of China (Grant No. 11875281), and China Postdoctoral Science Foundation (Grant No. 2019M650845)
Efficiently creating beams of spin-polarized positive muons with energies between eV and keV (so-called slow muon beams) is important for further development and application of muon spin rotation, relaxation, and resonance techniques. One existing moderation method involves the use of wide-band-gap materials as moderators such as rare gas solids and solid nitrogen thin films (band-gap energy between 11 eV and 22 eV). Based on this moderation method, we have studied the use of helium gas as a moderator, with the goal of producing the slow muon beam more efficiently. Because of helium’s high (24.6 eV) ionization energy and because the cross section for muonium formation is suppressed in helium gas, we expect the production of slow muons using helium gas to be highly efficient.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW039  
About • paper received ※ 01 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS037 The Deformation-Stress Simulation and Measurement of Titanium Foil Strip for Hadron Monitor 4187
 
  • A.X. Wang, J.X. Chen, H.Y. He, L. Liu, X.J. Nie, C.J. Ning, J.L. Sun, G.Y. Wang, J.B. Yu, Y.J. Yu, J.S. Zhang, D.H. Zhu
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • L. Kang
    IHEP, Beijing, People’s Republic of China
 
  The measurement of beam profile by hadron monitor is in fact the measurement of the positive current after the secondary electrons escaped. According to the situation that the number of beam particles is small and the current signal is weak, the material titanium with high secondary electron generation rate is select by material comparison, and the foil strip type is used to increase the cross section area to obtain lager current level. On account of dead weight itself, as well as thermal expansion and contraction, the foil strip shall be loose. The loosen strip will deviate from its theoretical position, and cause the measuring error. Therefore, the deformation-stress of Ti foil strip (1000*50*0.1) was simulated under the pretension (10~90N) with the finite element software ANSYS. A set of experiment device with pretension adjustment and heating for the foil strip was designed, and then the deformation-stress was tested by a high precision 3-D imaging measurement system. Compared with the simulation results, the pretension would better set at about 50N.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS037  
About • paper received ※ 12 May 2019       paper accepted ※ 19 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)