Paper | Title | Page |
---|---|---|
MOPTS018 | First Electron Beam at the Linear Accelerator FLUTE at KIT | 882 |
|
||
Funding: The SRR project has received funding from the European Union’s Horizon 2020 Research and Innovation program under Grant Agreement No 730871. The first electron beams were generated in the 7 MeV section of the short-pulse linear accelerator test facility FLUTE (Ferninfrarot Linac- Und Test-Experiment) at the Karlsruhe Institute of Technology (KIT). In this contribution we show images of the electron beam on a YAG-screen (yttrium aluminum garnet) as well as signals from an integrating current transformer (ICT) and a Faraday cup. Furthermore, the progress of tuning the FLUTE electron bunches for experiments is presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS018 | |
About • | paper received ※ 10 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPGW010 | Diagnostics and First Beam Measurements at FLUTE | 2484 |
|
||
FLUTE (Ferninfrarot Linac- Und Test-Experiment) is a compact versatile linear accelerator at the Karlsruhe Institute of Technology (KIT). It serves as a platform for a variety of accelerator studies as well as a source of strong ultra-short THz pulses for photon science. In the commissioning phase of the 7 MeV low energy section the electron bunches are used to test the different diagnostics systems installed in this section. An example is the split-ring-resonator-experiment. In this contribution we report on the commissioning status of the beam diagnostics and present first beam measurements at FLUTE. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW010 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTS015 | Synchronous Measurements of Electron Bunches Under the Influence of the Microbunching Instability | 3119 |
|
||
Funding: This work has been supported by the German Federal Ministry of Education and Research (Grant No. 05K16VKA). We acknowledge the support by the Helmholtz International Research School for Teratronics. The microbunching instability is a longitudinal collective instability which occurs for short electron bunches in a storage ring above a certain threshold current. The instability leads to a charge modulation in the longitudinal phase space. The resulting substructures on the longitudinal bunch profile vary over time and lead to fluctuations in the emitted power of coherent synchrotron radiation (CSR). To study the underlying longitudinal dynamics on a turn-by-turn basis, the KIT storage ring KARA (Karlsruhe Research Accelerator) provides a wide variety of diagnostic systems. By synchronizing the single-shot electro-optical spectral decoding setup (longitudinal profile), the bunch-by-bunch THz detection systems (THz power) and the horizontal bunch size measurement setup (energy spread), three important properties of the bunch during this instability can be measured at every turn for long time scales. This allows a deep insight into the dynamics of the bunch under the influence of the microbunching instability. This contribution will discuss effects like the connection between the emitted CSR power and the deformations in the longitudinal bunch profile on the time scale of the instability. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS015 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |