Author: Mueller, A.-S.     [Müller, A.-S.]
Paper Title Page
MOPGW017 Feedback Design for Control of the Micro-Bunching Instability based on Reinforcement Learning 104
 
  • T. Boltz, T. Asfour, M. Brosi, E. Bründermann, B. Härer, P. Kaiser, A.-S. Müller, C. Pohl, P. Schreiber, M. Yan
    KIT, Karlsruhe, Germany
 
  The operation of ring-based synchrotron light sources with short electron bunches increases the emission of coherent synchrotron radiation (CSR) in the THz frequency range. However, the micro-bunching instability resulting from self-interaction of the bunch with its own radiation field limits stable operation with constant intensity of CSR emission to a particular threshold current. Above this threshold, the longitudinal charge distribution and thus the emitted radiation vary rapidly and continuously. Therefore, a fast and adaptive feedback system is the appropriate approach to stabilize the dynamics and to overcome the limitations given by the instability. In this contribution, we discuss first efforts towards a longitudinal feedback design that acts on the RF system of the KIT storage ring KARA (Karlsruhe Research Accelerator) and aims for stabilization of the emitted THz radiation. Our approach is based on methods of adaptive control that were developed in the field of reinforcement learning and have seen great success in other fields of research over the past decade. We motivate this particular approach and comment on different aspects of its implementation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW017  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW018 Perturbation of Synchrotron Motion in the Micro-Bunching Instability 108
 
  • T. Boltz, M. Brosi, E. Bründermann, B. Härer, A.-S. Müller, P. Schreiber, P. Schönfeldt, M. Yan
    KIT, Karlsruhe, Germany
 
  Short electron bunches in a storage ring are subject to complex longitudinal dynamics due to self-interaction with their own CSR. Above a particular threshold current, this leads to the formation of dynamically changing micro-structures within the bunch, generally known as the micro-bunching instability. The longitudinal dynamics of this phenomenon can be simulated by solving the Vlasov-Fokker-Planck equation, where the CSR self-interaction can be added as a perturbation to the Hamiltonian. This contribution particularly focuses on the comprehension of synchrotron motion in the micro-bunching instability and how it relates to the formation of the occurring micro-structures. Therefore, we adopt the perspective of a single particle and comment on its implications for collective motion. We explicitly show how the shape of the parallel plates CSR wake potential breaks homogeneity in longitudinal phase space and propose a quadrupole-like mode as potential seeding mechanism of the micro-bunching instability. The gained insights are verified using the passive particle tracking method of the Vlasov-Fokker-Planck solver Inovesa.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW018  
About • paper received ※ 15 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS017 Status of Operation With Negative Momentum Compaction at KARA 878
 
  • P. Schreiber, T. Boltz, M. Brosi, B. Härer, A. Mochihashi, A.-S. Müller, A.I. Papash, M. Schuh
    KIT, Karlsruhe, Germany
 
  Funding: We are supported by the DFG-funded ’Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology’ and European Union’s Horizon 2020 research and innovation programme (No 730871)
For future synchrotron light source development novel operation modes are under investigation. At the Karlsruhe Research Accelerator (KARA) an optics with negative momentum compaction has been proposed, which is currently under commissioning. In this context, the collective effects expected in this regime are studied with an initial focus on the head-tail instability and the micro-bunching instability resulting from CSR self-interaction. In this contribution, we will present the proposed optics and the status of implementation for operation in the negative momentum compaction regime as well as a preliminary discussion of expected collective effects.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS017  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS018 First Electron Beam at the Linear Accelerator FLUTE at KIT 882
 
  • M.J. Nasse, A. Bernhard, E. Bründermann, A. Böhm, S. Funkner, B. Härer, I. Križnar, A. Malygin, S. Marsching, W. Mexner, A.-S. Müller, G. Niehues, R. Ruprecht, T. Schmelzer, M. Schuh, N.J. Smale, P. Wesolowski, M. Yan
    KIT, Karlsruhe, Germany
 
  Funding: The SRR project has received funding from the European Union’s Horizon 2020 Research and Innovation program under Grant Agreement No 730871.
The first electron beams were generated in the 7 MeV section of the short-pulse linear accelerator test facility FLUTE (Ferninfrarot Linac- Und Test-Experiment) at the Karlsruhe Institute of Technology (KIT). In this contribution we show images of the electron beam on a YAG-screen (yttrium aluminum garnet) as well as signals from an integrating current transformer (ICT) and a Faraday cup. Furthermore, the progress of tuning the FLUTE electron bunches for experiments is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS018  
About • paper received ※ 10 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW016 New Operation Regimes at the Storage Ring KARA at KIT 1422
 
  • A.I. Papash, E. Blomley, T. Boltz, M. Brosi, E. Bründermann, S. Casalbuoni, J. Gethmann, E. Huttel, B. Kehrer, A. Mochihashi, A.-S. Müller, R. Ruprecht, M. Schuh, J.L. Steinmann
    KIT, Karlsruhe, Germany
 
  The storage ring Karlsruhe Research Accelerator (KARA) at KIT operates in a wide energy range from 0.5 to 2.5 GeV. Initially, the ring was designed to serve as a Light Source for synchrotron radiation facility ANKA. Since then different operation modes have been implemented at KARA: in particular, the double bend achromat (DBA) lattice with non-dispersive straight sections, the theoretical minimum emittance (TME) lattice with distributed dispersion, and different versions of low compaction factor optics with highly stretched dispersion function. Short bunches of a few ps pulse width are available at KARA. Low alpha optics have been tested and implemented in a wide operational range of the ring and are now routinely used at 1.3 GeV for studies of CSR-induced beam dynamics and THz bursting in the micro-bunching instability. Different non-linear effects, in particular, residual high order components of magnetic fields generated in insertion devices have been studied and cured. A new operation mode at high vertical tune implemented at KARA essentially improves beam performance during user operation as well as at low alpha regimes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW016  
About • paper received ※ 23 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW020 Non-Linear Features of the cSTART Project 1437
 
  • B. Härer, E. Bründermann, A.B. Kaiser, A.-S. Müller, A.I. Papash, R. Ruprecht, J.M. Schaefer, M. Schuh
    KIT, Eggenstein-Leopoldshafen, Germany
 
  The compact storage ring for accelerator research and technology (cSTART) is being designed and will be realized at the Institute for Beam Physics and Technology (IBPT) of the Karlsruhe Institute of Technology (KIT). One important goal of the project is to demonstrate injection and storage of a laser wakefield accelerator (LWFA) beam in a storage ring. As a first stage the compact linear accelerator FLUTE will serve as an injector of 50 MeV bunches to test the ring’s performance. A highly non-linear lattice of DBA-FDF type was studied extensively. The specific features of ring optics are reported. A special transfer line from FLUTE to cSTART including bunch compressor and non-linear elements is presented that maintains the ultra-short bunch length of FLUTE.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW020  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW010 Diagnostics and First Beam Measurements at FLUTE 2484
 
  • T. Schmelzer, A. Bernhard, E. Bründermann, A. Böhm, S. Funkner, B. Härer, I. Križnar, A. Malygin, S. Marsching, W. Mexner, A.-S. Müller, M.J. Nasse, G. Niehues, R. Ruprecht, M. Schuh, N.J. Smale, P. Wesolowski, M. Yan
    KIT, Karlsruhe, Germany
 
  FLUTE (Ferninfrarot Linac- Und Test-Experiment) is a compact versatile linear accelerator at the Karlsruhe Institute of Technology (KIT). It serves as a platform for a variety of accelerator studies as well as a source of strong ultra-short THz pulses for photon science. In the commissioning phase of the 7 MeV low energy section the electron bunches are used to test the different diagnostics systems installed in this section. An example is the split-ring-resonator-experiment. In this contribution we report on the commissioning status of the beam diagnostics and present first beam measurements at FLUTE.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW010  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW016 Turn-by-Turn Horizontal Bunch Size and Energy Spread Studies at KARA 2498
 
  • B. Kehrer, M. Brosi, E. Bründermann, S. Funkner, A.-S. Müller, G. Niehues, M.M. Patil, M. Schuh, J.L. Steinmann
    KIT, Karlsruhe, Germany
  • L. Rota
    SLAC, Menlo Park, California, USA
 
  Funding: This work is funded by the BMBF under contract number: 05K16VKA
The energy spread is an important beam dynamics parameter. It can be derived from measurements of the horizontal bunch size. At the KIT storage ring KARA a fast-gated camera is routinely used for horizontal bunch size measurements with a single-turn resolution for a limited time span. To overcome the limits of the current camera setup in respect to resolution and time span, a high-speed line array with up to 10 Mfps, the KALYPSO system, is foreseen as a successor. The KALYPSO versions range from 256-pixel to 1024-pixel and allow unlimited turn-by-turn imaging of a single bunch at KARA. We successfully tested such a system at our visible light diagnostics port and present first results in this contribution.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW016  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW017 Continuous Bunch-by-Bunch Reconstruction of Short Detector Pulses 2501
 
  • J.L. Steinmann, M. Brosi, M. Caselle, B. Kehrer, M. Martin, A.-S. Müller, M.M. Patil, P. Schreiber
    KIT, Karlsruhe, Germany
 
  Funding: This work is funded by the BMBF contract number: 05K16VKA
The KAPTURE system (KArlsruhe Pulse Taking and Ultrafast Readout Electronics), developed at the Karlsruhe Institute of Technology (KIT), was designed to digitize detector pulses during multi-bunch operation at the KIT storage ring KARA (Karlsruhe Research Accelerator). KAPTURE provides digitization for pulses at rates of 500 MHz using up to 4 sampling points per pulse to record each bunch and each turn for potentially unlimited time. The new KAPTURE-2 system now provides eight sampling points per pulse, including baseline sampling between pulses, which allows improved reconstruction of the pulse shape. The advanced reconstruction of the pulse shape is realized with a highly parallelised implementation on GPU. The system will be used for the investigation on longitudinal beam dynamics e.g. by measuring instability induced CSR fluctuations or arrival time oscillations. This contribution will report on first results of the KAPTURE-2 system at KARA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW017  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW018 An Ultra-Fast and Wide-Spectrum Linear Array Detector for High Repetition Rate and Pulsed Experiments 2504
 
  • M.M. Patil, E. Bründermann, M. Caselle, S. Funkner, B. Kehrer, A.-S. Müller, G. Niehues, W. Wang, M. Weber
    KIT, Eggenstein-Leopoldshafen, Germany
  • C. Gerth
    DESY, Hamburg, Germany
  • D.R. Makowski, A. Mielczarek
    TUL-DMCS, Łódź, Poland
 
  Funding: "BMBF: is funded by the BMBF contract number: 05K16VKA" (2016-2018) ("NeoDyn")
Photon science research at accelerators is influenced radically by the developments of sensor and readout technologies for imaging. These technologies enable a wide range of applications in beam diagnostics, tomography and spectroscopy. The repetition rate of commercially available linear array detectors is a limiting factor for the emerging synchrotron applications. To overcome these limitations, KALYPSO(Karlsruhe Linear arraY detector for MHz rePetition rateSpectrOscopy), an ultra-fast and wide-field of view linear array detector operating at several mega-frames per second(Mfps), has been developed. A silicon micro-strip sensor is connected to custom cutting-edge front end ASICs to achieve unprecedented frame rate in continuous readout mode. In this contribution, the third generation of KALYPSO will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW018  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS015 Synchronous Measurements of Electron Bunches Under the Influence of the Microbunching Instability 3119
 
  • M. Brosi, T. Boltz, E. Bründermann, S. Funkner, B. Kehrer, A.-S. Müller, M.J. Nasse, G. Niehues, M.M. Patil, P. Schreiber, P. Schönfeldt, J.L. Steinmann
    KIT, Karlsruhe, Germany
 
  Funding: This work has been supported by the German Federal Ministry of Education and Research (Grant No. 05K16VKA). We acknowledge the support by the Helmholtz International Research School for Teratronics.
The microbunching instability is a longitudinal collective instability which occurs for short electron bunches in a storage ring above a certain threshold current. The instability leads to a charge modulation in the longitudinal phase space. The resulting substructures on the longitudinal bunch profile vary over time and lead to fluctuations in the emitted power of coherent synchrotron radiation (CSR). To study the underlying longitudinal dynamics on a turn-by-turn basis, the KIT storage ring KARA (Karlsruhe Research Accelerator) provides a wide variety of diagnostic systems. By synchronizing the single-shot electro-optical spectral decoding setup (longitudinal profile), the bunch-by-bunch THz detection systems (THz power) and the horizontal bunch size measurement setup (energy spread), three important properties of the bunch during this instability can be measured at every turn for long time scales. This allows a deep insight into the dynamics of the bunch under the influence of the microbunching instability. This contribution will discuss effects like the connection between the emitted CSR power and the deformations in the longitudinal bunch profile on the time scale of the instability.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS015  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS016 Longitudinal Beam Manipulation by RF Phase Modulation at the Karlsruhe Research Accelerator 3123
 
  • A. Mochihashi, E. Blomley, T. Boltz, E. Huttel, B. Kehrer, A.-S. Müller, M. Schuh
    KIT, Karlsruhe, Germany
  • D. Teytelman
    Dimtel, San Jose, USA
 
  At the storage ring KARA (Karlsruhe Research Accelerator) of the Karlsruhe Institute of Technology (KIT) we have installed a function for the RF phase modulation to the low-level RF system. By choosing proper conditions of the modulation, the electron distribution on the longitudinal phase space can be changed in a large range. There are several applications of this longitudinal manipulation to the accelerator operation: an improvement of the beam lifetime and suppression of collective instabilities. We have performed tracking simulations for the longitudinal beam manipulation by the RF phase modulation. The results have implied that the longitudinal phase space distribution strongly depends on the modulation frequency. We have also performed experiments, which aimed at improving the beam lifetime in 2.5 GeV KARA multi-bunch operations. In this contribution, the low-level RF system at KARA, the simulation and experimental results under the RF phase modulation will be presented. As one of the options of the modulation, we consider manipulation of the internal fine structure in the longitudinal phase space by the modulation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS016  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW026 Status of the Horizon 2020 EuPRAXIA Conceptual Design Study 3638
 
  • M.K. Weikum, A. Aschikhin, R.W. Aßmann, R. Brinkmann, U. Dorda, A. Ferran Pousa, T. Heinemann, F. Jafarinia, A. Knetsch, C. Lechner, W. Leemans, B. Marchetti, A. Martinez de la Ossa, P. Niknejadi, J. Osterhoff, K. Poder, R. Rossmanith, L. Schaper, E.N. Svystun, G.E. Tauscher, P.A. Walker, J. Zhu
    DESY, Hamburg, Germany
  • T. Akhter, S. De Nicola
    INFN-Napoli, Napoli, Italy
  • D. Alesini, M.P. Anania, F.G. Bisesto, E. Chiadroni, M. Croia, A. Del Dotto, M. Ferrario, F. Filippi, A. Gallo, A. Giribono, R. Pompili, S. Romeo, J. Scifo, C. Vaccarezza, F. Villa
    INFN/LNF, Frascati, Italy
  • A.S. Alexandrova, R. Torres, C.P. Welsch, J. Wolfenden
    The University of Liverpool, Liverpool, United Kingdom
  • A.S. Alexandrova, A. Beaton, J.A. Clarke, A.F. Habib, T. Heinemann, B. Hidding, P. Scherkl, N. Thompson, R. Torres, D. Ullmann, C.P. Welsch, S.M. Wiggins, J. Wolfenden, G.X. Xia
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • N.E. Andreev, D. Pugacheva
    JIHT RAS, Moscow, Russia
  • N.E. Andreev, D. Pugacheva
    MIPT, Dolgoprudniy, Moscow Region, Russia
  • I.A. Andriyash, M.-E. Couprie, A. Ghaith, D. Oumbarek Espinos
    SOLEIL, Gif-sur-Yvette, France
  • T. Audet, B. Cros, G. Maynard
    CNRS LPGP Univ Paris Sud, Orsay, France
  • A. Bacci, D. Giove, V. Petrillo, A.R. Rossi, L. Serafini
    INFN-Milano, Milano, Italy
  • I.F. Barna, M.A. Pocsai
    Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
  • A. Beaton, A.F. Habib, T. Heinemann, B. Hidding, D.A. Jaroszynski, G.G. Manahan, P. Scherkl, Z.M. Sheng, D. Ullmann, S.M. Wiggins
    USTRAT/SUPA, Glasgow, United Kingdom
  • A. Beck, F. Massimo, A. Specka
    LLR, Palaiseau, France
  • A. Beluze, F. Mathieu, D.N. Papadopoulos
    LULI, Palaiseau, France
  • A. Bernhard, E. Bründermann, A.-S. Müller
    KIT, Karlsruhe, Germany
  • S. Bielawski, E. Roussel, C. Szwaj
    PhLAM/CERLA, Villeneuve d’Ascq, France
  • F. Brandi, G. Bussolino, L.A. Gizzi, P. Koester, L. Labate, B. Patrizi, G. Toci, P. Tomassini, M. Vannini
    INO-CNR, Pisa, Italy
  • M.H. Bussmann, A. Irman, U. Schramm
    HZDR, Dresden, Germany
  • M. Büscher, A. Lehrach
    FZJ, Jülich, Germany
  • A. Chancé, P.A.P. Nghiem, C. Simon
    CEA-IRFU, Gif-sur-Yvette, France
  • M. Chen, Z.M. Sheng
    Shanghai Jiao Tong University, Shanghai, People’s Republic of China
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • A. Cianchi
    INFN-Roma II, Roma, Italy
  • J.A. Clarke, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • J. Cole, S.M. Hooker, M.J.V. Streeter, R. Walczak
    JAI, Oxford, United Kingdom
  • P.A. Crump, M. Huebner
    FBH, Berlin, Germany
  • G. Dattoli, F. Nguyen
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • N. Delerue, K. Wang
    LAL, Orsay, France
  • J.M. Dias, R.A. Fonseca, J.L. Martins, L.O. Silva, T. Silva, U. Sinha, J.M. Vieira
    IPFN, Lisbon, Portugal
  • R. Fedele, G. Fiore, D. Terzani
    UniNa, Napoli, Italy
  • A. Ferran Pousa, T. Heinemann, V. Libov
    University of Hamburg, Hamburg, Germany
  • M. Galimberti, P.D. Mason, R. Pattathil, D. Symes
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • L.A. Gizzi, L. Labate
    INFN-Pisa, Pisa, Italy
  • F.J. Grüner, A.R. Maier
    CFEL, Hamburg, Germany
  • F.J. Grüner, O.S. Karger, A.R. Maier
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • C. Haefner, C. Siders
    LLNL, Livermore, California, USA
  • B.J. Holzer
    CERN, Geneva, Switzerland
  • S.M. Hooker
    University of Oxford, Oxford, United Kingdom
  • T. Hosokai
    ISIR, Osaka, Japan
  • C. Joshi
    UCLA, Los Angeles, California, USA
  • M. Kaluza
    IOQ, Jena, Germany
  • M. Kaluza
    HIJ, Jena, Germany
  • M. Kando
    JAEA/Kansai, Kyoto, Japan
  • S. Karsch
    LMU, Garching, Germany
  • E. Khazanov, I. Kostyukov
    IAP/RAS, Nizhny Novgorod, Russia
  • D. Khikhlukha, D. Kocon, G. Korn, K.O. Kruchinin, A.Y. Molodozhentsev, L. Pribyl
    ELI-BEAMS, Prague, Czech Republic
  • O.S. Kononenko, A. Lifschitz
    LOA, Palaiseau, France
  • C. Le Blanc, Z. Mazzotta
    Ecole Polytechnique, Palaiseau, France
  • X. Li
    DESY Zeuthen, Zeuthen, Germany
  • V. Litvinenko
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • W. Lu
    TUB, Beijing, People’s Republic of China
  • O. Lundh
    Lund University, Lund, Sweden
  • V. Malka
    Weizmann Institute of Science, Physics, Rehovot, Israel
  • S.P.D. Mangles, Z. Najmudin, A.A. Sahai
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • A. Mostacci
    INFN-Roma, Roma, Italy
  • A. Mostacci
    Sapienza University of Rome, Rome, Italy
  • C.D. Murphy
    York University, Heslington, York, United Kingdom
  • V. Petrillo
    Universita’ degli Studi di Milano, Milano, Italy
  • M. Rossetti Conti
    Universita’ degli Studi di Milano & INFN, Milano, Italy
  • G. Sarri
    Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
  • C.B. Schroeder
    LBNL, Berkeley, California, USA
  • C.-G. Wahlstrom
    Lund Institute of Technology (LTH), Lund University, Lund, Sweden
  • R. Walczak
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • G.X. Xia
    UMAN, Manchester, United Kingdom
  • M. Yabashi
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • A. Zigler
    The Hebrew University of Jerusalem, The Racah Institute of Physics, Jerusalem, Israel
 
  Funding: This work was supported by the European Union’s Horizon 2020 Research and Innovation programme under grant agreement No. 653782.
The Horizon 2020 Project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction sites, one with a focus on beam-driven plasma acceleration (PWFA) and another site with a focus on laser-driven plasma acceleration (LWFA). User areas at both sites will provide access to FEL pilot experiments, positron generation and acceleration, compact radiation sources, and test beams for HEP detector development. Support centres in four different countries will complement the pan-European implementation of this infrastructure.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW026  
About • paper received ※ 26 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS066 Beam Impact Experiment of 440GeV/p Protons on Superconducting Wires and Tapes in a Cryogenic Environment 4264
 
  • A. Will, A. Bernhard, A.-S. Müller
    KIT, Karlsruhe, Germany
  • Y. Bastian, B. Bordini, M. Favre, B. Lindstrom, M. Mentink, A. Monteuuis, A. Oslandsbotn, R. Schmidt, A.P. Siemko, K. Stachon, M.P. Vaananen, A.P. Verweij, A. Will, D. Wollmann
    CERN, Geneva, Switzerland
  • M. Bonura, C. Senatore
    UNIGE, Geneva, Switzerland
  • A. Usoskin
    BRUKER HTS GmbH, Alzenau, Germany
 
  The superconducting magnets used in high energy particle accelerators such as CERN’s LHC can be impacted by the circulating beam in case of specific failure cases. This leads to interaction of the beam particles with the magnet components, like the superconducting coils, directly or via secondary particle showers. The interaction leads to energy deposition in the timescale of microseconds and induces large thermal gradients within the superconductors in the order of 100 K/mm. To investigate the effect on the superconductors, an experiment at CERN’s HiRadMat facility was designed and executed, exposing short samples of Nb-Ti and Nb3Sn strands as well as YBCO tape in a cryogenic environment to microsecond 440 GeV/p proton beams. The irradiated samples were extracted and are being analyzed for their superconducting properties, such as the critical transport current. This paper describes the experimental setup as well as the first results of the visual inspection of the samples.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS066  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS067 Characterisation of the Radiation Hardness of Cryogenic Bypass Diodes for the HL-LHC Inner Triplet Quadrupole Circuit 4268
 
  • D. Wollmann, C. Cangialosi, C. Cangialosi, F. Cerutti, G. D’Angelo, S. Danzeca, R. Denz, M. Favre, R. Garcia Alia, D. Hagedorn, A. Infantino, G. Kirby, L. Kistrup, T. Koettig, J. Lendaro, B. Lindstrom, A. Monteuuis, F. Rodriguez-Mateos, A.P. Siemko, K. Stachon, A. Tsinganis, M. Valette, A.P. Verweij, A. Will
    CERN, Geneva, Switzerland
  • A. Bernhard, A.-S. Müller
    KIT, Karlsruhe, Germany
 
  Funding: Work supported by the HL-LHC Project.
The powering layout of the new HL-LHC Nb3Sn triplet circuits is the use of cryogenic bypass diodes, where the diodes are located inside an extension to the magnet cryostat, operated in superfluid helium and exposed to radiation. Therefore, the radiation hardness of different type of bypass diodes has been tested at low temperatures in CERN’s CHARM irradiation facility during the operational year 2018. The forward characteristics, the turn on voltage and the reverse blocking voltage of each diode were measured weekly at 4.2 K and 77 K, respectively, as a function of the accumulated radiation dose. The diodes were submitted to a dose close to 12 kGy and a 1 MeV equivalent neutron fluence of 2.2x1014,n/cm2. After the end of the irradiation campaign the annealing behaviour of the diodes was tested by increasing the temperature slowly to 300 K. This paper describes the experimental setup, the measurement procedure and discusses the results of the measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS067  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)