Paper |
Title |
Page |
WEPRB106 |
Simulation of the Transition Radiation Transport Through an Optic System |
3059 |
SUSPFO036 |
|
|
- M. Marongiu, A. Mostacci, L. Palumbo
Sapienza University of Rome, Rome, Italy
- F.G. Bisesto, E. Chiadroni, G. Di Pirro, G. Franzini, A. Giribono, V. Shpakov, A. Stella, A. Variola
INFN/LNF, Frascati, Italy
- A. Cianchi
Università di Roma II Tor Vergata, Roma, Italy
- A. Mostacci, L. Palumbo
INFN-Roma, Roma, Italy
|
|
|
Optical Transition Radiation (OTR) screens are widely used for beam profile measurements. The radiation is emitted when a charged particle beam crosses the boundary between two media with different optical properties. The main advantages of OTR are the instantaneous emission process allowing fast single shot measurements (i.e. bunch by bunch measurements in a multi bunch machine), and the good linearity with the beam charge (if coherent effects can be neglected). Furthermore, OTR angular distribution strongly depends on beam energy. Since OTR screens are typically placed in several positions along the Linac to monitor beam envelope, one may perform a distributed energy measurement along the machine: this will be useful, for instance, during the commissioning phase of a machine. This paper deals with the studies of an algorithm to optimize the generation and the transport of the transition radiation through an optic system using the simulation tool Zemax. The algorithm, in combination with a particle tracking code (i.e. Elegant), will allow to simulate the radiation generated by a beam and, so, to take into account beam divergence and energy spread or chromatic effects in the optic system.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB106
|
|
About • |
paper received ※ 08 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPGW026 |
Status of the Horizon 2020 EuPRAXIA Conceptual Design Study |
3638 |
|
- M.K. Weikum, A. Aschikhin, R.W. Aßmann, R. Brinkmann, U. Dorda, A. Ferran Pousa, T. Heinemann, F. Jafarinia, A. Knetsch, C. Lechner, W. Leemans, B. Marchetti, A. Martinez de la Ossa, P. Niknejadi, J. Osterhoff, K. Poder, R. Rossmanith, L. Schaper, E.N. Svystun, G.E. Tauscher, P.A. Walker, J. Zhu
DESY, Hamburg, Germany
- T. Akhter, S. De Nicola
INFN-Napoli, Napoli, Italy
- D. Alesini, M.P. Anania, F.G. Bisesto, E. Chiadroni, M. Croia, A. Del Dotto, M. Ferrario, F. Filippi, A. Gallo, A. Giribono, R. Pompili, S. Romeo, J. Scifo, C. Vaccarezza, F. Villa
INFN/LNF, Frascati, Italy
- A.S. Alexandrova, R. Torres, C.P. Welsch, J. Wolfenden
The University of Liverpool, Liverpool, United Kingdom
- A.S. Alexandrova, A. Beaton, J.A. Clarke, A.F. Habib, T. Heinemann, B. Hidding, P. Scherkl, N. Thompson, R. Torres, D. Ullmann, C.P. Welsch, S.M. Wiggins, J. Wolfenden, G.X. Xia
Cockcroft Institute, Warrington, Cheshire, United Kingdom
- N.E. Andreev, D. Pugacheva
JIHT RAS, Moscow, Russia
- N.E. Andreev, D. Pugacheva
MIPT, Dolgoprudniy, Moscow Region, Russia
- I.A. Andriyash, M.-E. Couprie, A. Ghaith, D. Oumbarek Espinos
SOLEIL, Gif-sur-Yvette, France
- T. Audet, B. Cros, G. Maynard
CNRS LPGP Univ Paris Sud, Orsay, France
- A. Bacci, D. Giove, V. Petrillo, A.R. Rossi, L. Serafini
INFN-Milano, Milano, Italy
- I.F. Barna, M.A. Pocsai
Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
- A. Beaton, A.F. Habib, T. Heinemann, B. Hidding, D.A. Jaroszynski, G.G. Manahan, P. Scherkl, Z.M. Sheng, D. Ullmann, S.M. Wiggins
USTRAT/SUPA, Glasgow, United Kingdom
- A. Beck, F. Massimo, A. Specka
LLR, Palaiseau, France
- A. Beluze, F. Mathieu, D.N. Papadopoulos
LULI, Palaiseau, France
- A. Bernhard, E. Bründermann, A.-S. Müller
KIT, Karlsruhe, Germany
- S. Bielawski, E. Roussel, C. Szwaj
PhLAM/CERLA, Villeneuve d’Ascq, France
- F. Brandi, G. Bussolino, L.A. Gizzi, P. Koester, L. Labate, B. Patrizi, G. Toci, P. Tomassini, M. Vannini
INO-CNR, Pisa, Italy
- M.H. Bussmann, A. Irman, U. Schramm
HZDR, Dresden, Germany
- M. Büscher, A. Lehrach
FZJ, Jülich, Germany
- A. Chancé, P.A.P. Nghiem, C. Simon
CEA-IRFU, Gif-sur-Yvette, France
- M. Chen, Z.M. Sheng
Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- A. Cianchi
Università di Roma II Tor Vergata, Roma, Italy
- A. Cianchi
INFN-Roma II, Roma, Italy
- J.A. Clarke, N. Thompson
STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
- J. Cole, S.M. Hooker, M.J.V. Streeter, R. Walczak
JAI, Oxford, United Kingdom
- P.A. Crump, M. Huebner
FBH, Berlin, Germany
- G. Dattoli, F. Nguyen
ENEA C.R. Frascati, Frascati (Roma), Italy
- N. Delerue, K. Wang
LAL, Orsay, France
- J.M. Dias, R.A. Fonseca, J.L. Martins, L.O. Silva, T. Silva, U. Sinha, J.M. Vieira
IPFN, Lisbon, Portugal
- R. Fedele, G. Fiore, D. Terzani
UniNa, Napoli, Italy
- A. Ferran Pousa, T. Heinemann, V. Libov
University of Hamburg, Hamburg, Germany
- M. Galimberti, P.D. Mason, R. Pattathil, D. Symes
STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
- L.A. Gizzi, L. Labate
INFN-Pisa, Pisa, Italy
- F.J. Grüner, A.R. Maier
CFEL, Hamburg, Germany
- F.J. Grüner, O.S. Karger, A.R. Maier
University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
- C. Haefner, C. Siders
LLNL, Livermore, California, USA
- B.J. Holzer
CERN, Geneva, Switzerland
- S.M. Hooker
University of Oxford, Oxford, United Kingdom
- T. Hosokai
ISIR, Osaka, Japan
- C. Joshi
UCLA, Los Angeles, California, USA
- M. Kaluza
IOQ, Jena, Germany
- M. Kaluza
HIJ, Jena, Germany
- M. Kando
JAEA/Kansai, Kyoto, Japan
- S. Karsch
LMU, Garching, Germany
- E. Khazanov, I. Kostyukov
IAP/RAS, Nizhny Novgorod, Russia
- D. Khikhlukha, D. Kocon, G. Korn, K.O. Kruchinin, A.Y. Molodozhentsev, L. Pribyl
ELI-BEAMS, Prague, Czech Republic
- O.S. Kononenko, A. Lifschitz
LOA, Palaiseau, France
- C. Le Blanc, Z. Mazzotta
Ecole Polytechnique, Palaiseau, France
- X. Li
DESY Zeuthen, Zeuthen, Germany
- V. Litvinenko
BNL, Upton, Long Island, New York, USA
- V. Litvinenko
Stony Brook University, Stony Brook, USA
- W. Lu
TUB, Beijing, People’s Republic of China
- O. Lundh
Lund University, Lund, Sweden
- V. Malka
Weizmann Institute of Science, Physics, Rehovot, Israel
- S.P.D. Mangles, Z. Najmudin, A.A. Sahai
Imperial College of Science and Technology, Department of Physics, London, United Kingdom
- A. Mostacci
INFN-Roma, Roma, Italy
- A. Mostacci
Sapienza University of Rome, Rome, Italy
- C.D. Murphy
York University, Heslington, York, United Kingdom
- V. Petrillo
Universita’ degli Studi di Milano, Milano, Italy
- M. Rossetti Conti
Universita’ degli Studi di Milano & INFN, Milano, Italy
- G. Sarri
Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
- C.B. Schroeder
LBNL, Berkeley, California, USA
- C.-G. Wahlstrom
Lund Institute of Technology (LTH), Lund University, Lund, Sweden
- R. Walczak
Oxford University, Physics Department, Oxford, Oxon, United Kingdom
- G.X. Xia
UMAN, Manchester, United Kingdom
- M. Yabashi
RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
- A. Zigler
The Hebrew University of Jerusalem, The Racah Institute of Physics, Jerusalem, Israel
|
|
|
Funding: This work was supported by the European Union’s Horizon 2020 Research and Innovation programme under grant agreement No. 653782.
The Horizon 2020 Project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction sites, one with a focus on beam-driven plasma acceleration (PWFA) and another site with a focus on laser-driven plasma acceleration (LWFA). User areas at both sites will provide access to FEL pilot experiments, positron generation and acceleration, compact radiation sources, and test beams for HEP detector development. Support centres in four different countries will complement the pan-European implementation of this infrastructure.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW026
|
|
About • |
paper received ※ 26 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEZZPLS2 |
EuPRAXIA, a Step Toward a Plasma-Wakefield Based Accelerator With High Beam Quality |
2291 |
|
- P.A.P. Nghiem, A. Chancé
CEA-IRFU, Gif-sur-Yvette, France
- D. Alesini, E. Chiadroni, M. Croia, A. Del Dotto, M. Ferrario, A. Giribono, R. Pompili, S. Romeo, V. Shpakov, A. Stella, C. Vaccarezza
INFN/LNF, Frascati, Italy
- A. Aschikhin, R.W. Aßmann, U. Dorda, A. Ferran Pousa, V. Libov, B. Marchetti, A. Martinez de la Ossa, D. Marx, P. Niknejadi, L. Schaper, E.N. Svystun, P.A. Walker, M.K. Weikum, J. Zhu
DESY, Hamburg, Germany
- T. Audet, B. Cros, P. Lee, G. Maynard
CNRS LPGP Univ Paris Sud, Orsay, France
- A. Beck, F. Massimo, A. Specka
LLR, Palaiseau, France
- M. Chen, S.M. Weng
Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- A. Cianchi
Università di Roma II Tor Vergata, Roma, Italy
- J.A. Clarke
STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
- M.-E. Couprie, A. Ghaith, D. Oumbarek Espinos
SOLEIL, Gif-sur-Yvette, France
- G. Dattoli, F. Nguyen
ENEA C.R. Frascati, Frascati (Roma), Italy
- N. Delerue
LAL, Orsay, France
- R.A. Fonseca, L.O. Silva
Instituto Superior Tecnico, Lisbon, Portugal
- L.A. Gizzi, G. Toci, P. Tomassini
INO-CNR, Pisa, Italy
- A. Helm
IST-UTL, Lisbon, Portugal
- B. Hidding
Cockcroft Institute, Warrington, Cheshire, United Kingdom
- S.M. Hooker, R. Walczak
Oxford University, Physics Department, Oxford, Oxon, United Kingdom
- M.G. Ibison, M. Vujanovic, C.P. Welsch, J. Wolfenden
The University of Liverpool, Liverpool, United Kingdom
- D.A. Jaroszynski, F.Y. Li, Z.M. Sheng, S.M. Wiggins, S. Yoffe
USTRAT/SUPA, Glasgow, United Kingdom
- K.O. Kruchinin, A.Y. Molodozhentsev
ELI-BEAMS, Prague, Czech Republic
- L. Labate
CNR/IPP, Pisa, Italy
- X. Li
DESY Zeuthen, Zeuthen, Germany
- F. Mathieu
LULI, Palaiseau, France
- Z. Mazzotta
Ecole Polytechnique, Palaiseau, France
- T.J. Mehrling
LBNL, Berkeley, USA
- A. Mosnier, C. Simon
CEA, Gif-sur-Yvette, France
- A. Mostacci
Rome University La Sapienza, Roma, Italy
- Z. Najmudin
Imperial College of Science and Technology, Department of Physics, London, United Kingdom
- R. Pattathil, D. Symes
STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
- A.R. Rossi
INFN-Milano, Milano, Italy
- T. Silva, J.M. Vieira
IPFN, Lisbon, Portugal
- M.J.V. Streeter
JAI, London, United Kingdom
- D. Terzani
UniNa, Napoli, Italy
|
|
|
Funding: European Union’s Horizon 2020 research and innovation programme under grant agreement No. 653782
The EuPRAXIA project aims at designing the world’s first accelerator based on plasma-wakefield advanced technique, which can deliver a 5 GeV electron beam with simultaneously high charge, low emittance and low energy spread to user’s communities. Such challenging objectives can only have a chance to be achieved when particular efforts are dedicated to identify the subsequent issues and to find the way to solve them. Many injection/acceleration schemes and techniques have been explored by means of thorough simulations in more than ten European institutes to sort out the most appropriate ones. The specific issues of high charge, high beam quality and beam extraction then transfer to the user’s applications, have been tackled with many innovative approaches*. This article highlights the different advanced methods that have been employed by the EuPRAXIA collaboration and the preliminary results obtained. The needs in terms of laser and plasma parameters for such an accelerator are also summarized.
*- in 2017: Phys. Plasmas, 24,10,103120; Nat. Commun.8,15705; - in 2018: NIMA, 909,84-89; NIMA, 909,49-53; Phys. Rev.Acc. Beams, 21,111301; NIMA, 909,54-57; Phys. Rev.Acc. Beams, 21,052802; NIMA, 909,282-285
|
|
|
Slides WEZZPLS2 [5.157 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-WEZZPLS2
|
|
About • |
paper received ※ 12 April 2019 paper accepted ※ 17 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPRB032 |
The CompactLight Design Study Project |
1756 |
|
- G. D’Auria, S. Di Mitri, R.A. Rochow
Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
- M. Aicheler
HIP, University of Helsinki, Finland
- A.A. Aksoy
Ankara University, Accelerator Technologies Institute, Golbasi, Turkey
- D. Alesini, M. Bellaveglia, B. Buonomo, F. Cardelli, M. Croia, M. Diomede, M. Ferrario, A. Gallo, A. Giribono, L. Piersanti, B. Spataro, C. Vaccarezza
INFN/LNF, Frascati, Italy
- R. Apsimon, A. Castilla
Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
- J.M. Arnesano, F. Bosco, L. Ficcadenti, A. Mostacci, L. Palumbo
Sapienza University of Rome, Rome, Italy
- A. Bernhard, J. Gethmann
KIT, Karlsruhe, Germany
- G. Burt
Lancaster University, Lancaster, United Kingdom
- M. Calvi, T. Schmidt, K. Zhang
PSI, Villigen PSI, Switzerland
- H.M. Castaneda Cortes, J.A. Clarke, D.J. Dunning, N. Thompson
STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
- A.W. Cross, L. Zhang
USTRAT/SUPA, Glasgow, United Kingdom
- G. Dattoli, F. Nguyen, A. Petralia
ENEA C.R. Frascati, Frascati (Roma), Italy
- R.T. Dowd, D. Zhu
AS - ANSTO, Clayton, Australia
- W.D. Fang
SINAP, Shanghai, People’s Republic of China
- A. Faus-Golfe, Y. Han
LAL, Orsay, France
- E.N. Gazis, N. Gazis
National Technical University of Athens, Zografou, Greece
- R. Geometrante, M. Kokole
KYMA, Trieste, Italy
- V.A. Goryashko, M. Jacewicz, R.J.M.Y. Ruber
Uppsala University, Uppsala, Sweden
- X.J.A. Janssen, J.M.A. Priem
VDL ETG, Eindhoven, The Netherlands
- A. Latina, X. Liu, C. Rossi, D. Schulte, S. Stapnes, X.W. Wu, W. Wuensch
CERN, Geneva, Switzerland
- O.J. Luiten, P.H.A. Mutsaers, X.F.D. Stragier
TUE, Eindhoven, The Netherlands
- J. Marcos, E. Marín, R. Muñoz Horta, F. Pérez
ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
- G. Taylor
The University of Melbourne, Melbourne, Victoria, Australia
|
|
|
Funding: This project has received funding from the European Union’s Horizon2020 research and innovation programme under grant agreement No 777431
The H2020 CompactLight Project (www. CompactLight.eu) aims at designing the next generation of compact X-rays Free-Electron Lasers, relying on very high gradient accelerating structures (X-band, 12 GHz), the most advanced concepts for bright electron photo injectors, and innovative compact short-period undulators. Compared to existing facilities, the proposed facility will benefit from a lower electron beam energy, due to the enhanced undulators performance, and will be significantly more compact, with a smaller footprint, as a consequence of the lower energy and the high-gradient X-band structures. In addition, the whole infrastructure will also have a lower electrical power demand as well as lower construction and running costs.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB032
|
|
About • |
paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEPGW022 |
A Numerical Analysis to Choose the Most Performing Optical Transition Radiation Screen |
2518 |
|
- F. Cioeta, D. Alesini, A. Variola
INFN/LNF, Frascati, Italy
- M. Ciambrella, A. Mostacci
Sapienza University of Rome, Rome, Italy
- D. Cortis, M. Marongiu, V. Pettinacci
INFN-Roma, Roma, Italy
|
|
|
Optical Transition Radiation (OTR) screen represents the most appropriate instrument to measure and verify the characteristics of a beam spot size produced by a particle accelerator. In order to measure such beam properties, OTR screens have to sustain thermal and mechanical stresses due to the energy that several bunches deposit. Owing to these requirements, it is essential to identify the more suitable material to optimize the OTR dimensions and to get reliable measures from the diagnostic system. In this paper, we describe a numerical procedure to choose the most performing material taking into account the physical requirements of a multi-bunch high brightness. The procedure is based on a dedicated ANSYS script able to evaluate the fatigue life time of the material considering a high number of thermal cycles generated by several bunches. The main characteristic of this script is the capability to simulate the real thermal and mechanical effect on the target that the hitting particle beam produces. The numerical procedure has been applied to compare the performance of three relevant materials-Aluminium, Silicon and Graphite simulating a beam hitting with well-known parameters.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW022
|
|
About • |
paper received ※ 13 May 2019 paper accepted ※ 18 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEPRB105 |
Design of an X-Band Constant Impedance LINAC for Compact Light Project |
3055 |
|
- J.M. Arnesano, A. Mostacci, L. Palumbo
Sapienza University of Rome, Rome, Italy
- M. Diomede, M. Marongiu
INFN/LNF, Frascati, Italy
- L. Ficcadenti
INFN-Roma, Roma, Italy
|
|
|
Within the framework of Horizon 2020 project, Compact Light, in order to provide a high performance, high-gradient X-band technology, for the new generation of hard X-ray FEL, a travelling wave (TW) Linac, working on 2pi/3 mode at 11.9952 GHz, fed by two types of asymmetrically couplers, has been designed. The design was performed using CST Microwave Studio frequency domain solver. First, simulations have been conduct in order to obtain the best trade-off between single cell’s parameters, varying iris aperture. Then, the both couplers, with and without pumping port, has been tuned to avoid reflections at the input port. Finally, the entire structure, with 5 cells, was simulated. The main structure parameters will be present and we will also show and discuss the acceleranting gradient obtained vary with linac lenght and input power.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB105
|
|
About • |
paper received ※ 15 May 2019 paper accepted ※ 24 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|