Author: Mitchell, C.E.
Paper Title Page
TUPRB097 Recent Progress on the Design of Normal Conducting APEX-II VHF CW Electron Gun 1891
 
  • D. Li, H.Q. Feng, D. Filippetto, M.J. Johnson, A.R. Lambert, T.H. Luo, C.E. Mitchell, J. Qiang, F. Sannibale, J.W. Staples, S.P. Virostek, R.P. Wells
    LBNL, Berkeley, California, USA
  • H.Q. Feng
    TUB, Beijing, People’s Republic of China
 
  Funding: Director of Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
We report recent progress on the design of a normal conducting CW electron gun, APEX-II (Advanced Photo-injector EXperiment-II) at Lawrence Berkeley National Laboratory. APEX-II is an upgrade of the successful APEX gun and the LCLS-II (Linac Coherent Light Source-II) injector, aiming at applications for Free electron laser (FEL) such as LCLS-II High Energy upgrade, UED (Ultrafast Electron Diffraction) and UEM (Ultrafast Electron Microscopy). The APEX-II adopted a two-cell cavity design with resonant frequency of 162.5 MHz. The APEX-II gun is targeting to achieve exceeding 30 MV/m of launch gradient at the cathode and output energy above 1.5 MeV with transverse emittance of 0.1 um at 100 pC. Advanced MOGA optimization technique has been used for both the RF cavity design and extensive beam dynamics studies using APEX-like and LCLS-II like injector layout. Detailed RF designs, beam dynamics studies, preliminary engineering design and FEA analysis will be presented, with cavity features that were demonstrated to be crucial in the operation of the APEX gun.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB097  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS076 RF Design of APEX2 Cavities 2094
 
  • T.H. Luo, H.Q. Feng, D. Filippetto, M.J. Johnson, A.R. Lambert, D. Li, C.E. Mitchell, F. Sannibale, J.W. Staples, S.P. Virostek, R.P. Wells
    LBNL, Berkeley, California, USA
  • H.Q. Feng
    TUB, Beijing, People’s Republic of China
 
  Funding: Director of Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231
APEX2 is a proposed high repetition rate, high brightness electron source based on CW normal conducting RF cavities, aiming to further extend the brightness performance for FEL and UED/UEM beyond APEX. APEX2 consists of two cavities, one gun cavity for generating photo-electrons and one following cavity for beam energy boosting. In this paper, we present the RF design of the APEX2 cavities. The design has considered both beam dynamics requirements and engineering feasibility. A novel geometry optimization method with Genetic Algorithm has been implemented in the design procedure.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS076  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS080 Beam Dynamics Studies of an APEX2-Based Photoinjector 2109
 
  • C.E. Mitchell, H.Q. Feng, D. Filippetto, M.J. Johnson, A.R. Lambert, D. Li, T.H. Luo, F. Sannibale, J.W. Staples, S.P. Virostek, R.P. Wells
    LBNL, Berkeley, California, USA
 
  APEX2 is a proposed normal conducting radio-frequency (RF) electron gun operating in the very high frequency (VHF) range in continuous wave (CW) mode, designed to drive applications that require both high beam brightness and high repetition rate, such as free electron lasers (such as LCLS-II-HE), ultra-fast electron diffraction, and microscopy. The gun consists of a two-cell RF cavity operating at 162.5 MHz with a cathode field of 34 MV/m, together with an embedded focusing solenoid. We study the beam dynamics in an APEX-II-based photoinjector (up to ~20 MeV), targeting a transverse 95% beam emittance of 0.1 um at 12.5 A peak current for the case of 100 pC charge for FEL applications. The high cathode field leads to enhanced beam brightness, while the increased gun exit energy of ~1.5 MeV reduces the effects of space charge, and possibly eliminates the need for an RF buncher. The embedded solenoid is designed to control the transverse beam size while minimizing emittance growth due to geometric aberrations. As a result, the transverse beam performance targets are achieved, and ongoing work will further optimize longitudinal beam quality for downstream FEL transport.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS080  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB084 Mechanical Design and Analysis of the Proposed APEX2 VHF CW Electron Gun 3014
 
  • A.R. Lambert, H.Q. Feng, D. Filippetto, M.J. Johnson, D. Li, T.H. Luo, C.E. Mitchell, F. Sannibale, J.W. Staples, S.P. Virostek, R.P. Wells
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the Office of Science, U.S. Department of Energy under DOE contract number DEAC02-05CH11231
Normal conducting radio-frequency (RF) guns resonating in the very high frequency (VHF) range (30-300 MHz) and operating in continuous wave (CW) mode have successfully achieved the targeted brightness and reliability necessary for upgrading the performance of current lower repetition rate accelerator-based instruments such as X-ray free electron lasers (FELs), and ultra-fast electron diffraction (UED) and microscopy (UEM). The APEX2 (Advanced Photo-injector Experiment 2) electron gun is a proposed upgrade for the current LCLS-II injector, which was based on the original APEX design. In contrast, APEX2 is designed as a two-cell cavity operating at 162.5 MHz with a launching field at the cathode equal to 34 MV/m, producing a beam energy of 1.5 to 2 MeV, more than double APEX. Operation of the gun in this condition will require upwards of 200 kW of RF power, thus proper thermal management is crucial to achieve target performance. This paper describes the current design, thermal performance and tuning methods.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB084  
About • paper received ※ 13 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS078 Chaos Indicators for Studying Dynamic Aperture in the IOTA Ring with Protons 3301
 
  • K. Hwang, C.E. Mitchell, R.D. Ryne
    LBNL, Berkeley, USA
 
  The Integrable Optics Test Accelerator (IOTA) is a novel storage ring under commissioning at Fermi National Accelerator Laboratory designed (in part) to investigate the dynamics of beams in the presence of highly nonlinear transverse focusing fields that generate integrable single-particle motion. In this study, we explore the sensitivity of the lattice dynamic aperture to the presence of nonlinear space charge. For this purpose, two distinct chaos indicators are compared (frequency map analysis and forward-backward integration). Because the integrability of motion requires integer betatron tune advance between passes through the nonlinear magnetic element, a large role is played by space-charge-induced tune spread. As a result, these tools are also applied to a toy model of the IOTA lattice to investigate the sensitivity of dynamic aperture to violations of the integer tune advance condition.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS078  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS079 Analysis of Particle Noise in a Gridless Spectral Poisson Solver for Symplectic Multiparticle Tracking 3304
 
  • C.E. Mitchell, J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: This work was was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Gridless symplectic methods for self-consistent modeling of space charge in intense beams possess several advantages over traditional momentum-conserving particle-in-cell methods, including the absence of numerical grid heating and the presence of an underlying multi-particle Hamiltonian. Despite these advantages, there remains evidence of irreversible emittance growth due to numerical particle noise. For a class of such algorithms, a first-principles kinetic model of the numerical particle noise is obtained and applied to gain insight into noise-induced entropy growth and thermal relaxation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS079  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS083 Multipass Simulations of Space Charge Compensation using Electron Columns at IOTA 3313
 
  • C.S. Park, E.G. Stern
    Fermilab, Batavia, Illinois, USA
  • S. Chattopadhyay, B.T. Freemire
    Northern Illinois University, DeKalb, Illinois, USA
  • C.E. Mitchell, R.D. Ryne
    LBNL, Berkeley, USA
 
  Defocusing repulsive forces due to self space charge fields lead to degradation of high-intensity particle beams. Being of particular concern for low- and medium-energy proton beams, they result in emittance growth, beam halo formation, and beam loss. They set stringent limits on the intensity of frontier accelerators; therefore, the mitigation of space charge effects is a crucial challenge to improve proton beam intensity. The space charge effects in a positively charged proton beam can be effectively compensated using negatively charged electron columns. In this paper, we present the results of simulations using Synergia of the Electron Column lattice for IOTA. Beam loss due to space charge effects and aperture restrictions have been studied, as well as bunch formation and matching using an adiabatic ramp of the RF cavity. The results show the need for space charge compensation, and provide the basis for integration of the Synergia and Warp codes in order to form a complete simulation of space charge compensation using an Electron Column in IOTA.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS083  
About • paper received ※ 16 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)