Paper |
Title |
Page |
MOPTS085 |
Commissioning of a New Digital Transverse Damper System at the PSB |
1050 |
|
- G.P. Di Giovanni, F. Antoniou, A. Blas, Y. Brischetto, A. Findlay, G. Kotzian, B. Mikulec, G. Sterbini
CERN, Geneva, Switzerland
|
|
|
At the CERN Proton Synchrotron Booster, PSB, an analog transverse damper system has been in operation since 1999, providing satisfactory operational results with the proton beam supplied by Linac2. As a consequence of the LHC Injectors Upgrade, the PSB will face new challenges imposed by higher intensity, injection and extraction energy. In this framework, the transverse feedback system is subject to an upgrade to adapt to the expected Linac4 beam and to the demands for new features including transverse blow-up, beam excitation for optics measurements and new remote control and monitoring capabilities. The replacement of the aging electronic hardware is also recommended to improve the system maintainability for future years. During 2018 a new digital transverse feedback electronics was installed in the PSB, in parallel with the current operational one, offering for the first time the occasion to demonstrate its performance with beam. Encouraging results were obtained such as the suppression of beam instabilities at all PSB energies and intensities. In this paper we describe the steps undertaken in 2018 in order to commission the system with the main goal to accelerate and extract the highest intensity beams produced at the PSB.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS085
|
|
About • |
paper received ※ 06 May 2019 paper accepted ※ 18 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPTS086 |
Identification and Compensation of Betatronic Resonances in the Proton Synchrotron Booster at 160 Mev |
1054 |
|
- A. Santamaría García, S.C.P. Albright, F. Antoniou, F. Asvesta, H. Bartosik, G.P. Di Giovanni, B. Mikulec
CERN, Geneva, Switzerland
- F. Asvesta
NTUA, Athens, Greece
- H. Rafique
University of Manchester, Manchester, United Kingdom
|
|
|
The Proton Synchrotron Booster (PSB) is the first circular accelerator in the injector chain to the Large Hadron Collider (LHC) and accelerates protons from 50 MeV to 1.4 GeV. The PSB will need to deliver two times the current brightness after the LHC Injectors Upgrade (LIU) in order to meet the High Luminosity LHC (HL-LHC) beam requirements. At the current injection energy a large incoherent space charge tune spread limits the brightness of the beams, which is one of the main motivations to increase the injection energy to 160 MeV with the injection provided by Linac4, a new H− linear accelerator. The higher injection energy will allow doubling the beam intensity while maintaining a space charge tune spread similar to current values. The degradation of the beam brightness due to the tune spread can be minimized with a proper choice of working point and an efficient compensation of resonances. In this paper, we present the measurement of the betatronic resonances in the four rings of the PSB at 160 MeV before the Long Shutdown 2, as well as the results of a proposed compensation scheme.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS086
|
|
About • |
paper received ※ 13 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPTS087 |
Transverse Emittance Studies at Extraction of the CERN PS Booster |
1058 |
|
- F. Antoniou, S.C.P. Albright, F. Asvesta, H. Bartosik, G.P. Di Giovanni, V. Forte, M.A. Fraser, A. Garcia-Tabares, A. Huschauer, B. Mikulec, T. Prebibaj, A. Santamaría García, P.K. Skowroński
CERN, Meyrin, Switzerland
- F. Asvesta
NTUA, Athens, Greece
- T. Prebibaj
National Technical University of Athens, Zografou, Greece
|
|
|
Transverse emittance discrepancy in the beam transfer between the Proton Synchrotron Booster (PSB) and the Proton Synchrotron (PS) is observed in operational conditions for the LHC beams at CERN. The ongoing LHC Injectors Upgrade (LIU) project requires a tight budget for beam degradation along the injector chain and therefore the reason for this emittance discrepancy needs to be understood. Systematic measurements have been performed for various beam characteristics (beam intensity, transverse and longitudinal emittance). In this paper, a comparison between the emittance measurements using all available beam instrumentation with different emittance computation algorithms is presented. The results are compared to measurements at PS injection. Furthermore, the impact on the LIU project requirements for the emittance preservation along the LHC Injectors Complex is discussed.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS087
|
|
About • |
paper received ※ 14 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPTS096 |
Linac4: Reliability Run Results and Source Extraction Studies |
1090 |
|
- D. Noll, G. Bellodi, S.B. Bertolo, F.D.L. Di Lorenzo, J.-B. Lallement, J. Lettry, A.M. Lombardi, C.M. Mastrostefano, B. Mikulec, M. O’Neil, S. Schuh, R. Wegner
CERN, Geneva, Switzerland
|
|
|
Linac4, a 160 MeV, 352.2 MHz linear accelerator, has been fully commissioned and will take its place as new injector to the CERN chain of accelerators during the long shutdown (LS2) in 2019-2020. In the past year, it has been continuously providing beam during a test run to assess its reliability in view of the connection to the LHC injector chain. The target reliability of more than 90% has been demonstrated during the accumulated nine months of run in 2017 and 2018. The beam quality at 160 MeV is suitable for producing all beams for the CERN physics program of today. Nevertheless, the limited peak current of 30mA might be a limitation for future high intensity programs. The bottleneck has been identified at the low energy end of the accelerator. In the meantime, beam extraction and low energy beam transport studies are ongoing at a dedicated test stand with the goal to reach beam currents from the pre-injector up to 45 mA. We will present the status of the modelling of the pre-injector and possible solutions to reach higher beam currents from the RFQ along with results from the reliability run.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS096
|
|
About • |
paper received ※ 30 April 2019 paper accepted ※ 19 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPTS101 |
Study of the Transverse Emittance Blow-Up Along the Proton Synchrotron Booster Cycle During Wire Scanner Operation |
1110 |
|
- A. Santamaría García, F. Antoniou, H. Bartosik, J.A. Briz Monago, G.P. Di Giovanni, A. Guerrero, J.R. Hunt, B. Mikulec, F. Roncarolo, E. Senes, V. Vlachoudis
CERN, Geneva, Switzerland
- E. Senes
Oxford University, Physics Department, Oxford, Oxon, United Kingdom
|
|
|
Transverse emittance measurements with wire scanners have been extensively studied across the accelerator complex at CERN due to their important role in characterizing the beam and their complicated modeling. In recent years, this topic has been of particular interest for the LHC Injectors Upgrade (LIU) project, where a tight transverse emittance blow-up budget between the Proton Synchrotron Booster (PSB) and the Proton Synchrotron (PS) is imposed to assure the required beam brightness for the High Luminosity LHC (HL-LHC). In order to maintain a high brightness beam, any source of emittance blow-up along the PSB cycle needs to be identified and mitigated. While wire scanners have been mostly used at extraction energy in the PSB, they can also operate along the energy cycle. The scattering of the protons with the wire increases considerably at lower energies, leading to an overestimation of the beam emittance. In this contribution we present the most recent studies, focusing on precisely quantifying the blow-up created by the flying wire with measurements in an optimized set-up and compared to FLUKA simulations.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS101
|
|
About • |
paper received ※ 13 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THXPLM1 |
LHC Injectors Upgrade Project: Towards New Territory Beam Parameters |
3385 |
|
- M. Meddahi, R. Alemany-Fernández, H. Bartosik, G. Bellodi, J. Coupard, H. Damerau, G.P. Di Giovanni, F.B. Dos Santos Pedrosa, A. Funken, B. Goddard, K. Hanke, A. Huschauer, V. Kain, A.M. Lombardi, B. Mikulec, S. Prodon, G. Rumolo, R. Scrivens, E.N. Shaposhnikova
CERN, Geneva, Switzerland
|
|
|
The LHC injectors Upgrade (LIU) project aims at increasing the intensity and brightness in the LHC injectors in order to match the challenging requirements of the High-Luminosity LHC (HL-LHC) project, while ensuring high availability and reliable operation of the injectors complex up to the end of the HL-LHC era (ca. 2035). This requires extensive hardware modifications and new beam dynamics solutions in the entire LHC proton and ion injection chains: the new Linac4, the Proton Synchrotron Booster, the Proton Synchrotron the Super Proton Synchrotron together with the ion PS injectors (the Linac3 and the Low Energy Ion Ring). All hardware modifications will be implemented during the 2019-2020 CERN accelerators shutdown. This talk would analyze the various project phases, share the lessons learned, and conclude on the expected beam parameter reach, together with the related risks.
|
|
|
Slides THXPLM1 [20.029 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-THXPLM1
|
|
About • |
paper received ※ 14 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|