Paper |
Title |
Page |
MOPTS030 |
Characterisation and First Beam Line Tests of the Elbe Stripline Kicker |
918 |
|
- Ch. Schneider, A. Arnold, M. Freitag, J. Hauser, P. Michel
HZDR, Dresden, Germany
|
|
|
The linac based CW electron accelerator ELBE operates different secondary beamlines one at a time. For the future different end stations should be served simultaneously, hence specific bunch patterns have to be kicked into different beam-lines. The variability of the bunch pattern and the frequency resp. switching time are one of the main arguments for a stripline-kicker. A design with two tapered active electrodes and two ground fenders was optimized in time and frequency domain with the software package CST. From that a design has been transferred into a construction and was manufactured. The prototype has been tested in the laboratory and installed in the ELBE beam line. The presentation summarises the recent results and the first beam line test.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS030
|
|
About • |
paper received ※ 10 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPRB012 |
Design of High Power CW IR-THz Source for the Radiation Source ELBE Upgrade |
1702 |
|
- P.E. Evtushenko, T.E. Cowan, U. Lehnert, P. Michel
HZDR, Dresden, Germany
|
|
|
The Radiation Source ELBE at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) is a user facility based on a 1 mA - 40 MeV CW SRF LINAC. Presently HZDR is considering upgrade options for the ELBE or its replacement with a new CW, SRF LINAC-based user facility. A part of the user requirements is the capability to generate IR and THz pulse in the frequency range from 0.1 through 30 THz, with pulse energies in the range from 100 uJ through a few mJ, at the repetition rate between 100 kHz and 1 MHz. This corresponds to the pulse energy increase, dependent on the wavelength by a factor from 100 through 1000. In this contribution, we outline key aspects of a concept, which would allow to achieve such parameters. Such key aspects are: 1 - use of a beam with longitudinal density modulation and bunching factor of about 0.5 at the fundamental frequency; 2 - achieving the density modulation through the mechanism similar to the one used in optical klystron (OK) and HGHG FEL; 3 - generating necessary for the modulation optical beam by an FEL oscillator, and 4 - using two electron injectors, where one injector provides beam for the FEL oscillator while second high charge injector provides beam for the high energy per pulse generation for user experiments. All-in-all the concept of the new radiation source is very similar to an OK, but operating with two beams simultaneously.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB012
|
|
About • |
paper received ※ 21 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|