Paper | Title | Page |
---|---|---|
MOZPLS2 | Ion Collider Precision Measurements With Different Species | 28 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC, under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Precedent to electron cooling commissioning and collisions of Gold at various energies at RHIC in 2018, the STAR experiment desired an exploration of the chiral magnetic effect in the quark gluon plasma (QGP) with an isobar run, utilizing Ruthenium and Zirconium. Colliding Zr-96 with Zr-96 and Ru-96 with Ru-96 create the same QGP but in a different magnetic field due to the different charges of the Zr (Z=40) and Ru (Z=44) ions. Since the charge difference is only 10%, the experimental program requires exacting store conditions for both ions. These systematic error concerns presented new challenges for the Collider, including frequent reconfiguration of the Collider for the different ion species, and maintaining level amounts of instantaneous and integrated luminosity between two species. Moreover, making beams of Zr-96 and Ru-96 is challenging since the natural abundances of these isotopes are low. Creating viable enriched source material for Zr-96 required assistance processing from RIKEN, while Ru-96 was provided by a new enrichment facility under commissioning at Oak Ridge National Laboratory. |
||
![]() |
Slides MOZPLS2 [4.758 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOZPLS2 | |
About • | paper received ※ 11 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP044 | Improving the Luminosity for Beam Energy Scan II at RHIC | 540 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The QCD (Quantum Chromodynamics) phase diagram has many uncharted territories, particularly the nature of the transformation from Quark-Gluon plasma (QGP) to the state of Hadronic gas. The Beam Energy Scan I (BES-I) at the Relativistic Heavy Ion Collider (RHIC) was completed but measurements had large statistical errors. To improve the statistical error and expand the search for first-order phase transition and location of the critical point, Beam Energy Scan II will commence in 2019 with a goal of improving the luminosity by a factor of 3-4. The beam lifetime at low energies was and will be limited by some physical effects of which the most significant are intrabeam scattering, space charge, beam-beam, persistent current effects. This article will review these potential limiting factors and introduce the countermeasures which will be in place to improve BES-II luminosity. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP044 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP050 | Performance of CeC PoP Accelerator | 559 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Coherent electron cooling experiment is aimed for demonstration of the proof-of-principle demonstration of reduction energy spread of a single hadron bunch circulating in RHIC. The electron beam should have the required parameters and its orbit and energy should be matched to the hadron beam. In this paper we present the achieved electron beam parameters including emittance, energy spread, and other critical indicators. The operational issues as well as future plans are also discussed. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP050 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP051 | 56 MHz SRF System for SPHENIX Experiments at RHIC | 562 |
|
||
Funding: Work supported by by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy The sPHENIX experiment is a proposal for a new detector at the Relativistic Heavy Ion Collider (RHIC), that plans to expand on discoveries made by RHIC’s existing STAR and PHENIX research groups. To minimize the luminosity outside the 20 cm vertex detector and keeping the radiation to other detector components as low as possible, a 56 MHz SRF system is added to the existing RHIC RF systems to compress the bunches with less beam loss. The existing 56 MHz SRF cavity was commissioned in previous RHIC runs, and contributed to the luminosity at a voltage of 300kV with thermal limitations from the Higher Order Mode coupler at high field, and at 1MV while using its fundamental damper for HOM damping. In this paper, we will analyze and compare the effect of different RF systems at various scenarios, and discuss possible solutions to the Higher Order Mode (HOM) damping scheme to bring the cavity to 2 MV. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP051 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPRB085 | First Results from Commissioning of Low Energy RHIC Electron Cooler (LEReC) | 769 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The brand new non-magnetized bunched beam electron cooler (LEReC) [1] has been built to provide luminosity improvement for Beam Energy Scan II (BES-II) physics program at the Relativistic Heavy Ion Collider (RHIC) BES-II [2]. The LEReC accelerator includes a photocathode DC gun, a laser system, a photocathode delivery system, magnets, beam diagnostics, a SRF booster cavity, and a set of Normal Conducting RF cavities to provide sufficient flexibility to tune the beam in the longitudinal phase space. This high-current high-power accelerator was successfully commissioned in period of March -September 2018. Beam quality suitable for cooling has been demonstrated. In this paper we discuss beam commissioning results and experience learned during commissioning. [1] A. Fedotov et al., ’Status of bunched beam electron cooler LEReC’ in these proceedings. [2] C.Liu et al., ’Improving luminosity of Beam Energy Scan II at RHIC’ in these proceedings. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB085 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPRB102 | Correction of Crosstalk Effect in the LEReC Booster Cavity | 3051 |
|
||
Funding: Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE. The Linac of Low Energy RHIC electron Cooler (LEReC) is designed to deliver a 1.6 MeV to 2.6 MeV electron beam, with peak-to-peak dp/p less than 7·10-4. The booster cavity is the major accelerating component in LEReC, which is a 0.4 cell cavity operating at 2 K, with a maximum energy gain of 2.2 MeV. It is modified from the Energy Recovery Linac (ERL) photocathode gun, with fundamental power coupler (FPC), pickup coupler (PU) and higher order mode (HOM) coupler close to each other. The direct coupling between FPC and PU induced crosstalk effect in this cavity. This effect is simulated and measured, and is further corrected using low level RF (LLRF) to meet the energy spread requirement. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB102 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |